معرفی کتاب
عنوان: #نمره_گذاری #رورشاخ: #هفت #سیستم #معتبر نمره گذاری
در این کتاب، #برنشتاین و #مسلینگ به معرفی هفت نظام برتر نمره گذاری و تفسیر #آزمون #لکه های #جوهر #رورشاخ پرداخته اند و توضیحات و نحوه نمره گذاری را در هر نظام بطور کامل همراه با دستورالعمل اجرا ارائه نموده اند.
کانال دکتر امیر محمد شهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani
Title: #Scoring the #Rorschach: #Seven #Validated #Systems
http://bookzz.org/book/1087414/621ff4
#Robert_Bornstein, #Joseph_Masling
کانال دکتر امیر محمد شهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani
عنوان: #نمره_گذاری #رورشاخ: #هفت #سیستم #معتبر نمره گذاری
در این کتاب، #برنشتاین و #مسلینگ به معرفی هفت نظام برتر نمره گذاری و تفسیر #آزمون #لکه های #جوهر #رورشاخ پرداخته اند و توضیحات و نحوه نمره گذاری را در هر نظام بطور کامل همراه با دستورالعمل اجرا ارائه نموده اند.
کانال دکتر امیر محمد شهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani
Title: #Scoring the #Rorschach: #Seven #Validated #Systems
http://bookzz.org/book/1087414/621ff4
#Robert_Bornstein, #Joseph_Masling
کانال دکتر امیر محمد شهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani
bookzz.org
Scoring the Rorschach: Seven Validated Systems (Lea Series in Personality and Clinical Psychology) | Robert F. Bornstein, Joseph…
Scoring the Rorschach: Seven Validated Systems (Lea Series in Personality and Clinical Psychology) | Robert F. Bornstein, Joseph M. Masling | digital library bookzz | bookzz. Download books for free. Find books
♻️#مدلسازی و #پیش_بینی #توجه #مستمر
#Connectome-based #predictive #modeling of #attention: Comparing different #functional #connectivity features and #prediction methods across #datasets
در گزارشی که به تازگی منتشر شده است، پژوهشگران نوروساینس دانشگاه ییل 🇺🇸 روشی جدید برای #مدلسازی، #طبقه بندی و #پیش بینی #الگوهای توجه در افراد یافته اند.
🔬در این پژوهش 294 داوطلب تکالیف توجهی مختلفی را در وضعیت های مختلف و حین #fMRI انجام دادند.
📚بر اساس یافته های پژوهش حاضر، می توان در حوزه #توجه #پایدار در افراد، بر اساس #تفاوتهای #فردی 12 الگوی مختلف وجود دارد که بر اساس آن #کنشوری و #عملکرد کارکردهای اجرایی افراد با دقت بالایی قابل پیش بینی است.
Abstract
#Connectome-based predictive #modeling was recently developed to predict #individual #differences in #traits and #behaviors, including #fluid #intelligence and #sustained #attention, from #functional #brain #connectivity (#FC) measured with #fMRI. Here, using the #CPM framework, we compared the #predictive power of three different measures of FC (#Pearson's #correlation, #accordance, and #discordance) and two different #prediction #algorithms (#linear and #partial #least #square [#PLS] #regression) for attention #function. Accordance and discordance are recently proposed FC measures that respectively track #in-phase #synchronization and #out-of-phase #anti-correlation. We defined connectome-based models using task-based or #resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were #internally #validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested. The validation datasets included: 1) data collected during performance of a #stop-signal task and at rest (N = 83, including 19 participants who were administered #methylphenidate prior to scanning;) data collected during #Attention #Network #Task performance and rest (N = 41), and 3) resting-state data and #ADHD symptom severity from the #ADHD-200 Consortium (N = 113). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models, it is useful to consider accordance features and PLS regression for CPM.
لینک منبع 👇🏻(further reading)👇🏻
https://doi.org/10.1016/j.neuroimage.2017.11.010
✅(در صورت جذابیت و علاقمندی به موضوع، مطلب را برای دیگران نیز بازنشر فرمایید).
📢کانال #دکترامیرمحمدشهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani
#Connectome-based #predictive #modeling of #attention: Comparing different #functional #connectivity features and #prediction methods across #datasets
در گزارشی که به تازگی منتشر شده است، پژوهشگران نوروساینس دانشگاه ییل 🇺🇸 روشی جدید برای #مدلسازی، #طبقه بندی و #پیش بینی #الگوهای توجه در افراد یافته اند.
🔬در این پژوهش 294 داوطلب تکالیف توجهی مختلفی را در وضعیت های مختلف و حین #fMRI انجام دادند.
📚بر اساس یافته های پژوهش حاضر، می توان در حوزه #توجه #پایدار در افراد، بر اساس #تفاوتهای #فردی 12 الگوی مختلف وجود دارد که بر اساس آن #کنشوری و #عملکرد کارکردهای اجرایی افراد با دقت بالایی قابل پیش بینی است.
Abstract
#Connectome-based predictive #modeling was recently developed to predict #individual #differences in #traits and #behaviors, including #fluid #intelligence and #sustained #attention, from #functional #brain #connectivity (#FC) measured with #fMRI. Here, using the #CPM framework, we compared the #predictive power of three different measures of FC (#Pearson's #correlation, #accordance, and #discordance) and two different #prediction #algorithms (#linear and #partial #least #square [#PLS] #regression) for attention #function. Accordance and discordance are recently proposed FC measures that respectively track #in-phase #synchronization and #out-of-phase #anti-correlation. We defined connectome-based models using task-based or #resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were #internally #validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested. The validation datasets included: 1) data collected during performance of a #stop-signal task and at rest (N = 83, including 19 participants who were administered #methylphenidate prior to scanning;) data collected during #Attention #Network #Task performance and rest (N = 41), and 3) resting-state data and #ADHD symptom severity from the #ADHD-200 Consortium (N = 113). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models, it is useful to consider accordance features and PLS regression for CPM.
لینک منبع 👇🏻(further reading)👇🏻
https://doi.org/10.1016/j.neuroimage.2017.11.010
✅(در صورت جذابیت و علاقمندی به موضوع، مطلب را برای دیگران نیز بازنشر فرمایید).
📢کانال #دکترامیرمحمدشهسوارانی
🍃🌹🌸💐🌸🌹🍃
@DrAmirMohammadShahsavarani