DenoiseLAB
486 subscribers
1.33K photos
159 videos
3 files
1.57K links
Блог DenoiseLAB (машинное обучение, аналитика)

Информация в канале служит только для ознакомления и не является призывом к действию. Не нарушайте законы РФ и других стран. Мы не несем отвественность за ваши действия или бездействия.
Download Telegram
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_97

🔠Q_97: Как происходит взаимодействие с Cloudera Impala ? (Часть_1)

✔️Ответ:

1. Impala Daemon (Impalad): Это основной серверный компонент Impala, который выполняет запросы SQL в реальном времени и взаимодействует с клиентами.

2. Query Planner: Он отвечает за планирование и оптимизацию запросов перед их выполнением. Он определяет наиболее эффективные способы выполнения запросов, включая выбор индексов, управление параллелизмом запросов и др.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_98

🔠Q_98: Как происходит взаимодействие с Cloudera Impala ? (Часть_2)

✔️Ответ:

5. Distributed File System (HDFS): Используется для хранения данных, доступных для обработки Impala. Данные хранятся в формате блоков и распределены по узлам кластера.

6. Metastore: Это хранилище метаданных для данных Hive и Impala. Он хранит информацию о таблицах, столбцах, типах данных и других свойствах данных.

7. Impala Shell: Интерактивная командная оболочка, которая предоставляет средства для взаимодействия с Impala и выполнения запросов SQL.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_98

🔠Q_98: Как происходит взаимодействие с Cloudera Impala ? (Часть_2)

✔️Ответ:

8. Impala JDBC/ODBC drivers: Обеспечивают подключение к Impala из сторонних приложений и инструментов, позволяя использовать эти приложения для выполнения запросов SQL и получения данных из Impala.

9. Impala UI: Веб-интерфейс для мониторинга и администрирования кластера Impala. Позволяет отслеживать выполнение запросов, просматривать статистику выполнения и управлять ресурсами.

10. Impala Statestore: Это сервис, отвечающий за поддержание состояния кластера Impala, включая информацию о доступных узлах и их загруженности, для балансировки запросов и распределения задач.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_98

🔠Q_98: Плюсы и минусы Cloudera Impala ? (Часть_1)

✔️Ответ:

Плюсы Cloudera Impala:
1. Высокая производительность: Cloudera Impala предлагает быстрый доступ к данным с помощью обработки запросов в памяти. Он предоставляет низкую задержку при выполнении запросов, особенно когда речь идет о сложных запросах, включающих большие объемы данных.

2. Интерактивные запросы: Cloudera Impala обеспечивает возможность выполнения интерактивных запросов непосредственно к данным в Hadoop-кластере, что позволяет аналитикам быстро получать реальные временные отчеты и выводить результаты в режиме реального времени.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_98

🔠Q_98: Плюсы и минусы Cloudera Impala ? (Часть_1)

✔️Ответ:

Плюсы Cloudera Impala:
3. Интеграция с Hadoop-экосистемой: Cloudera Impala полностью интегрируется с другими инструментами и сервисами Hadoop, такими как Hadoop Distributed File System (HDFS), Apache Hive, Hue и другие. Это позволяет пользователям использовать уже существующую инфраструктуру и данные для выполнения запросов с помощью Impala.

4. Легкость использования: Cloudera Impala предлагает SQL-подобный язык запросов, что делает его легко доступным и понятным для аналитиков и специалистов по данным.

5. Поддержка различных типов данных: Cloudera Impala поддерживает различные типы данных и форматы, включая текст, паркет, avro, RCFile и другие.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_98

🔠Q_98: Плюсы и минусы Cloudera Impala ? (Часть_1)

✔️Ответ:
Минусы Cloudera Impala:
1. Ограниченная масштабируемость: Cloudera Impala может столкнуться с проблемами производительности и масштабируемости при обработке больших объемов данных или сложных запросов. В некоторых случаях большие запросы могут привести к перегрузке памяти или снижению производительности.

2. Ограниченная поддержка некоторыми форматами данных: Cloudera Impala не полностью поддерживает некоторые форматы данных, такие как ORC и Parquet, что может ограничить возможности использования некоторых данных.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_98

🔠Q_98: Плюсы и минусы Cloudera Impala ? (Часть_4)

✔️Ответ:
Минусы Cloudera Impala:
3. Требование к ресурсам: Cloudera Impala требует большого количества ресурсов для обеспечения высокой производительности. Это означает, что пользователи могут столкнуться с проблемами ограниченных ресурсов и потерей производительности в случае недостатка вычислительной мощности.

4. Сложность настройки и управления: Настройка и управление Cloudera Impala может быть сложной задачей для средних и малых предприятий, требующих опытных специалистов по данным или администраторов систем.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_99

🔠Q_99: Что такое Impala Daemon ?

✔️Ответ:

Impala daemon - это процесс, который запускается на каждом рабочем узле кластера Apache Impala. Этот демон отвечает за выполнение запросов к данным в режиме реального времени, используя распределенную обработку. Он является частью архитектуры Impala и обеспечивает высокую производительность и масштабируемость системы. Каждый impala daemon управляет своим собственным набором потоков выполнения и обрабатывает запросы от клиентов Impala, а также координирует работу с другими узлами кластера для получения необходимых данных и обработки операций.

#work #datalake #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
100 Вопросов по Машинному обучению (Machine Learning) - Вопрос_100

🔠Q_100: Что такое Apache Kafka ?

✔️Ответ:

Apache Kafka - это распределенная платформа для обработки, хранения и передачи потоков данных в реальном времени. Он предоставляет возможность управлять потоками данных между различными системами и компонентами приложения.

Kafka основан на модели издатель-подписчик, где данные публикуются в "топики" и могут быть подписаны множеством приложений. Вместо того, чтобы просто передавать сообщения напрямую от отправителя к получателю, Kafka сохраняет сообщения на длительное время в разделенных топиках. Это позволяет приложениям читать данные из топиков в любое время и в любом порядке, а также создавать множество параллельных потоков обработки.

https://kafka.apache.org

#work #kafka #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_101

🔠Q_101: Почему говорят что Apache Kafka используется как Event Processing Systems ?

✔️Ответ:

Данная технология поддерживается для двух классов приложений:

- построение потоков каналов в режиме реального времени (real-time streaming data piplines) c надежностью получения данных между системами и приложениями.

- построение потоковых приложений в режиме реального времени (real-time streaming applications) которые трансформируют или реагируют на данные потока.

#work #kafka #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #impala
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_102

🔠Q_102: Что такое DataWarehouse ?

✔️Ответ:

Data warehouse — это централизованное хранилище данных, специально организованное для аналитической обработки и создания отчетов. Оно объединяет данные из различных источников, таких как операционные базы данных, внешние системы и файлы, и предоставляет возможность получать доступ к этим данным для анализа и принятия управленческих решений. Data warehouse обеспечивает структурированное хранение, учет и интеграцию данных, а также поддерживает различные методы анализа, включая OLAP (Online Analytical Processing), отчетность и аналитику. Он предназначен для упрощения процесса анализа данных и повышения эффективности бизнес-процессов.

#work #kafka #algorithms #math #ml #dl #tree #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_103

🔠Q_103: В чем плюсы и минусы Kaffka Streams ?

✔️Ответ:

Плюсы Kafka Streams:
1. Kafka Streams работает в кластере Kafka и использует его быстрый механизм записи и чтения данных.
2. Kafka Streams построен на основе API Kafka, что обеспечивает простоту в разработке и развертывании.
3. Kafka Streams обеспечивает точность и гарантирует, что каждое сообщение будет обработано в нужном порядке и без потерь.
4. Kafka Streams легко масштабируется горизонтально, что позволяет увеличить производительность системы при увеличении ее нагрузки.
5. Kafka Streams автоматически обрабатывает распределение задач между множеством физических узлов и обеспечивает отказоустойчивость.

#work #kafka #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_103

🔠Q_103: В чем плюсы и минусы Kaffka Streams ?

✔️Ответ:

Минусы Kafka Streams:
1. В сравнении с некоторыми другими стриминговыми платформами Kafka Streams может оказаться менее функциональным и гибким в использовании.
2. Перед использованием Kafka Streams необходимо настроить кластер Kafka, что может потребовать дополнительных ресурсов и усилий.
3. Kafka Streams является частью экосистемы Kafka и непосредственно зависит от нее, что может ограничить выбор других платформ или решений.
4. Kafka Streams не предоставляет встроенного функционала для обработки алгоритмов машинного обучения, что может потребовать его интеграции с другими инструментами или библиотеками.

#work #kafka #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_104

🔠Q_104: Как устроена Kaffka Streams ? (Часть_1)

✔️Ответ:

Концептуально Kafka Streams состоит из следующих элементов:

1. Потоки (Streams): Kafka Streams позволяет работать с непрерывным потоком данных, поступающих в брокер Kafka. Он может выполнять такие операции, как фильтрация, преобразование, агрегация и присоединение данных в режиме реального времени.

2. Компактные темы (Compact Topics): В Kafka Streams используются специальные "компактные" темы, которые автоматически удаляют устаревшие данные и поддерживают сжатие и дедупликацию данных.

3. Топология (Topology): Это описание преобразований и операций, которые необходимы для обработки данных в Kafka Streams. Топология может быть организована в виде графа, где узлы представляют операции обработки данных, а ребра - потоки данных.

#work #kafka #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_104

🔠Q_104: Как устроена Kaffka Streams ? (Часть_2)

✔️Ответ:

4. Распределение (Distribution): Kafka Streams легко масштабируется и поддерживает распределение работы между несколькими экземплярами приложений Kafka Streams. Он использует встроенные возможности распределения и репликации данных в Apache Kafka, чтобы обеспечить высокую пропускную способность и отказоустойчивость.

5. Хранилища состояния (State Stores): Kafka Streams позволяет создавать и поддерживать распределенные хранилища состояния, которые могут быть использованы для сохранения временных данных и промежуточных результатов операций.

6. Задержки (Windowing): Kafka Streams имеет возможность выполнять агрегацию и аналитику данных на основе временных окон. Это позволяет выполнять рассчеты на основе данных за определенный временной промежуток или событий, произошедших за последние N секунд.

#work #kafka #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_105

🔠Q_105: Что такое stateful-обработка в Apache Kafka ?

✔️Ответ:

Stateful-обработка в Apache Kafka относится к способу обработки сообщений, при котором состояние (state) хранится и используется в процессе обработки сообщений.

В традиционной преобразовательной обработке сообщений, каждое сообщение обрабатывается независимо и не учитывает состояния предыдущих сообщений. Однако, в некоторых случаях, может быть необходимо учитывать предыдущие сообщения для более сложной логики обработки. Stateful-обработка позволяет сохранять и использовать состояние в процессе обработки сообщений для реализации более сложной логики.

Примеры использования stateful-обработки в Apache Kafka могут включать вычисление агрегированных данных по времени, дедупликацию сообщений, распределенную обработку запросов и т.д.

#work #kafka #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_106

🔠Q_106: что такое MapRCDP ?

✔️Ответ:

MapR-CDP (MapR Converged Data Platform) — это инновационная платформа для обработки и анализа данных, предоставляемая компанией MapR Technologies. MapR-CDP объединяет в себе возможности распределенного хранения данных, аналитики, искусственного интеллекта/машинного обучения и потоковой обработки данных в реальном времени в единой интегрированной системе.

Основные компоненты платформы включают в себя распределенную файловую систему MapR-FS, базу данных MapR-DB и систему потоковой обработки данных MapR Streams. MapR-CDP позволяет организациям эффективно управлять большими объемами данных, проводить анализ данных в реальном времени и применять машинное обучение и искусственный интеллект для получения ценных инсайтов.

#work #maprdcp #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_107

🔠Q_107: Каков состав и архитектура MapRCDP ? (Часть_1)

✔️Ответ:

1. MapR-FS (файловая система): MapR использует свою распределенную файловую систему, которая обеспечивает высокую производительность и надежность. MapR-FS обеспечивает прозрачный доступ к данным в реальном времени и поддерживает ACID-транзакции для обеспечения консистентности данных.

2. MapR Control System: Это центральное управляющее приложение, которое позволяет администраторам мониторить и управлять распределенными кластерами MapR.

3. MapR Streams: Это распределенная платформа для обработки потоков данных в реальном времени. Она упрощает разработку и развертывание приложений, которые могут обрабатывать большие объемы данных в режиме реального времени.

#work #maprdcp #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_107

🔠Q_107: Каков состав и архитектура MapRCDP ? (Часть_2)

✔️Ответ:

4. MapR-DB: Это распределенная база данных, основанная на Apache HBase. MapR-DB предоставляет высокую производительность и надежность для хранения и обработки структурированных данных.

5. MapR-XD: Это распределенное хранилище данных для хранения больших объемов данных. MapR-XD предоставляет высокую пропускную способность и масштабируемость для обработки данных.

6. Apache Hadoop и другие инструменты: MapR также включает в себя Apache Hadoop, Spark, Drill и другие инструменты для обработки данных.

#work #maprdcp #ml #dl #learning #machine #bigdata #coding #apache #data #warehouse
https://github.com/DenoiseLAB?tab=repositories - периодически сюда пушу, неплохие решения которые были за практику.

#coding