❓300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_221
🔠 Что вы знаете про Partial Dependence Plots (PDP) ? (Часть_1)
Partial Dependence Plots (PDP) представляют собой графические инструменты, позволяющие визуализировать влияние одного или двух признаков на предсказания модели машинного обучения, игнорируя влияние остальных признаков. Это делает PDP мощным инструментом для интерпретации моделей, особенно в контексте линейной регрессии, где они всегда показывают линейные отношения. PDP также могут быть использованы для классификации, отображая вероятности для определенного класса при различных значениях признаков.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
🔠 Что вы знаете про Partial Dependence Plots (PDP) ? (Часть_1)
Partial Dependence Plots (PDP) представляют собой графические инструменты, позволяющие визуализировать влияние одного или двух признаков на предсказания модели машинного обучения, игнорируя влияние остальных признаков. Это делает PDP мощным инструментом для интерпретации моделей, особенно в контексте линейной регрессии, где они всегда показывают линейные отношения. PDP также могут быть использованы для классификации, отображая вероятности для определенного класса при различных значениях признаков.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
❓300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_221
🔠 Что вы знаете про Partial Dependence Plots (PDP) ? (Часть_2)
Основные преимущества PDP включают:
- Интуитивность: PDP легко понимаются и позволяют быстро интерпретировать влияние признаков на предсказания модели.
- Глобальный подход: PDP учитывают все экземпляры данных, предоставляя глобальное представление о взаимосвязи признаков с предсказаниями.
- Каузальная интерпретация: PDP позволяют анализировать каузальные отношения между признаками и предсказаниями, хотя это не всегда применимо к реальному миру.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
🔠 Что вы знаете про Partial Dependence Plots (PDP) ? (Часть_2)
Основные преимущества PDP включают:
- Интуитивность: PDP легко понимаются и позволяют быстро интерпретировать влияние признаков на предсказания модели.
- Глобальный подход: PDP учитывают все экземпляры данных, предоставляя глобальное представление о взаимосвязи признаков с предсказаниями.
- Каузальная интерпретация: PDP позволяют анализировать каузальные отношения между признаками и предсказаниями, хотя это не всегда применимо к реальному миру.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
❓300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_221
🔠 Что вы знаете про Partial Dependence Plots (PDP) ? (Часть_3)
Однако, есть и недостатки:
- Ограничение на количество признаков: В реальности, максимальное количество признаков в PDP обычно ограничено двумя из-за ограничений в двухмерном представлении.
- Пропущенное распределение признаков: Некоторые PDP не показывают распределение признаков, что может ввести в заблуждение, особенно в областях с малой частотой данных.
- Предположение об независимости: PDP предполагают, что признаки, для которых вычисляется частичная зависимость, не коррелируют с другими признаками. Это может привести к нереалистичным интерпретациям, когда признаки коррелируют.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
🔠 Что вы знаете про Partial Dependence Plots (PDP) ? (Часть_3)
Однако, есть и недостатки:
- Ограничение на количество признаков: В реальности, максимальное количество признаков в PDP обычно ограничено двумя из-за ограничений в двухмерном представлении.
- Пропущенное распределение признаков: Некоторые PDP не показывают распределение признаков, что может ввести в заблуждение, особенно в областях с малой частотой данных.
- Предположение об независимости: PDP предполагают, что признаки, для которых вычисляется частичная зависимость, не коррелируют с другими признаками. Это может привести к нереалистичным интерпретациям, когда признаки коррелируют.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
❓300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_222
🔠Какие есть аналоги Partial Dependence Plots (PDP) ?
1. Accumulated Local Effects (ALE) Plots:
- Похожи на PDPs, но более устойчивы к смещению, вызванному распределением входных данных.
- ALE оценивают локальное влияние переменной, а не глобальное влияние, как в PDPs.
2. Shapley Additive Explanations (SHAP):
- Метод, основанный на теории кооперативных игр, для объяснения прогнозов индивидуальных образцов.
- Вычисляет вклад каждой входной переменной в прогноз для каждого наблюдения.
- Предоставляет как локальные, так и глобальные объяснения модели.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
🔠Какие есть аналоги Partial Dependence Plots (PDP) ?
1. Accumulated Local Effects (ALE) Plots:
- Похожи на PDPs, но более устойчивы к смещению, вызванному распределением входных данных.
- ALE оценивают локальное влияние переменной, а не глобальное влияние, как в PDPs.
2. Shapley Additive Explanations (SHAP):
- Метод, основанный на теории кооперативных игр, для объяснения прогнозов индивидуальных образцов.
- Вычисляет вклад каждой входной переменной в прогноз для каждого наблюдения.
- Предоставляет как локальные, так и глобальные объяснения модели.
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
❓300 Вопросов по Машинному обучению (Machine Learning) - Вопрос_222
🔠Какие есть аналоги Partial Dependence Plots (PDP) ? (Часть_2)
3. Individual Conditional Expectation (ICE) plots: Эти графики также используются для визуализации и анализа взаимодействия целевой переменной и набора входных признаков. Однако, в отличие от PDP, ICE позволяет наблюдать за изменением предсказания для конкретных значений признаков, сохраняя остальные признаки на их средних значениях.
4. ICE Curves: Подобно ICE plots, ICE Curves также позволяют наблюдать за изменением предсказания модели при изменении значений отдельных признаков, но в виде кривых, что может быть более удобно для визуализации изменений на разных уровнях признака
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization
🔠Какие есть аналоги Partial Dependence Plots (PDP) ? (Часть_2)
3. Individual Conditional Expectation (ICE) plots: Эти графики также используются для визуализации и анализа взаимодействия целевой переменной и набора входных признаков. Однако, в отличие от PDP, ICE позволяет наблюдать за изменением предсказания для конкретных значений признаков, сохраняя остальные признаки на их средних значениях.
4. ICE Curves: Подобно ICE plots, ICE Curves также позволяют наблюдать за изменением предсказания модели при изменении значений отдельных признаков, но в виде кривых, что может быть более удобно для визуализации изменений на разных уровнях признака
#Partial_Dependence_Plots #Machine_Learning #Model_Interpretation #Linear_Regression #Classification #Feature_Influence #Predictive_Modeling #Data_Visualization