❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_118 (Часть_1)
🔠Q_118: Что такое Apache NiFi ?
Apache Nifi - это открытая платформа для обработки и распределения данных в реальном времени. Она разработана для работы с большими объемами данных и позволяет создавать сложные потоки данных для их обработки, маршрутизации и преобразования. Apache Nifi имеет визуальный интерфейс, который облегчает процесс создания и настройки потоков данных.
Сcылка: https://nifi.apache.org
#ApacheNifi #DataProcessing #RealTimeData #DataDistribution #DataStreams #DataRouting #DataTransformation #DataIntegration #DataManagement #DataAutomation #BigData #DataSources #Databases #Files #IOT #DataMonitoring #BusinessProcesses #Filtering #Routing #Transformation #Aggregation
🔠Q_118: Что такое Apache NiFi ?
Apache Nifi - это открытая платформа для обработки и распределения данных в реальном времени. Она разработана для работы с большими объемами данных и позволяет создавать сложные потоки данных для их обработки, маршрутизации и преобразования. Apache Nifi имеет визуальный интерфейс, который облегчает процесс создания и настройки потоков данных.
Сcылка: https://nifi.apache.org
#ApacheNifi #DataProcessing #RealTimeData #DataDistribution #DataStreams #DataRouting #DataTransformation #DataIntegration #DataManagement #DataAutomation #BigData #DataSources #Databases #Files #IOT #DataMonitoring #BusinessProcesses #Filtering #Routing #Transformation #Aggregation
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_118 (Часть_2)
🔠Q_118: Что такое Apache NiFi ?
С помощью Apache Nifi можно интегрировать различные источники данных, такие как базы данных, файлы, сенсоры IoT и другие, а также управлять потоками данных в режиме реального времени. Это позволяет организациям эффективно обрабатывать и мониторить данные, а также автоматизировать различные бизнес-процессы. Apache Nifi поддерживает большое количество операций обработки данных, включая фильтрацию, маршрутизацию, трансформацию, агрегацию и др.
Сcылка: https://nifi.apache.org
#ApacheNifi #DataProcessing #RealTimeData #DataDistribution #DataStreams #DataRouting #DataTransformation #DataIntegration #DataManagement #DataAutomation #BigData #DataSources #Databases #Files #IOT #DataMonitoring #BusinessProcesses #Filtering #Routing #Transformation #Aggregation
🔠Q_118: Что такое Apache NiFi ?
С помощью Apache Nifi можно интегрировать различные источники данных, такие как базы данных, файлы, сенсоры IoT и другие, а также управлять потоками данных в режиме реального времени. Это позволяет организациям эффективно обрабатывать и мониторить данные, а также автоматизировать различные бизнес-процессы. Apache Nifi поддерживает большое количество операций обработки данных, включая фильтрацию, маршрутизацию, трансформацию, агрегацию и др.
Сcылка: https://nifi.apache.org
#ApacheNifi #DataProcessing #RealTimeData #DataDistribution #DataStreams #DataRouting #DataTransformation #DataIntegration #DataManagement #DataAutomation #BigData #DataSources #Databases #Files #IOT #DataMonitoring #BusinessProcesses #Filtering #Routing #Transformation #Aggregation
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_141
🔠 Какие еще методы нормализации данных существуют помимо Min-Max и Z-нормализации? (Часть_2)
🧪Ответ:
3/ Масштабирование на основе распределения (Distribution-based scaling): Этот метод основан на статистических свойствах распределения данных, таких как среднее и стандартное отклонение. Он масштабирует данные таким образом, чтобы они имели определенное распределение, например, нормальное распределение или равномерное распределение.
4/ Масштабирование на основе рангов (Rank-based scaling): Этот метод основан на ранжировании значений данных. Он преобразует данные в их ранговые значения, чтобы сохранить порядок значений, не обращая внимания на их конкретные числовые значения. Это полезно, когда данные содержат выбросы или несимметричные распределения.
#scaling #scaling #statistical properties #mean #standarddeviation #datadistribution #normaldistribution
🤕 🤕 🤕 https://boosty.to/denoise_lab/donate - фишки кода, полезные фичи или просто если вы хотите поддержать наш канал.
🔠 Какие еще методы нормализации данных существуют помимо Min-Max и Z-нормализации? (Часть_2)
🧪Ответ:
3/ Масштабирование на основе распределения (Distribution-based scaling): Этот метод основан на статистических свойствах распределения данных, таких как среднее и стандартное отклонение. Он масштабирует данные таким образом, чтобы они имели определенное распределение, например, нормальное распределение или равномерное распределение.
4/ Масштабирование на основе рангов (Rank-based scaling): Этот метод основан на ранжировании значений данных. Он преобразует данные в их ранговые значения, чтобы сохранить порядок значений, не обращая внимания на их конкретные числовые значения. Это полезно, когда данные содержат выбросы или несимметричные распределения.
#scaling #scaling #statistical properties #mean #standarddeviation #datadistribution #normaldistribution
Please open Telegram to view this post
VIEW IN TELEGRAM
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_143
🔠Какой метод нормализации подходит для данных с нелинейной зависимостью? (Часть_1)
🧪Ответ:
Для данных с нелинейной зависимостью подходит полиномиальное масштабирование (Polynomial scaling). Этот метод позволяет захватить нелинейные взаимосвязи между переменными и улучшить моделирование.
При использовании полиномиального масштабирования данные преобразуются с помощью полиномиальных функций. Обычно используются функции, такие как полиномы Лежандра, полиномы Чебышева или полиномы Лагерра. Эти функции позволяют учитывать нелинейные зависимости и взаимодействия между переменными.
#scaling #scaling #statistical #mean #standarddeviation #datadistribution #normaldistribution
🤕 🤕 🤕 https://boosty.to/denoise_lab/donate - фишки кода, полезные фичи или просто если вы хотите поддержать наш канал.
🔠Какой метод нормализации подходит для данных с нелинейной зависимостью? (Часть_1)
🧪Ответ:
Для данных с нелинейной зависимостью подходит полиномиальное масштабирование (Polynomial scaling). Этот метод позволяет захватить нелинейные взаимосвязи между переменными и улучшить моделирование.
При использовании полиномиального масштабирования данные преобразуются с помощью полиномиальных функций. Обычно используются функции, такие как полиномы Лежандра, полиномы Чебышева или полиномы Лагерра. Эти функции позволяют учитывать нелинейные зависимости и взаимодействия между переменными.
#scaling #scaling #statistical #mean #standarddeviation #datadistribution #normaldistribution
Please open Telegram to view this post
VIEW IN TELEGRAM
❓200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_143
🔠Какой метод нормализации подходит для данных с нелинейной зависимостью? (Часть_2)
Полиномиальное масштабирование может быть полезным, когда в данных присутствуют квадратичные, кубические или более высокие нелинейные зависимости. Применение полиномиального масштабирования позволяет моделировать и учитывать такие зависимости, что может привести к более точным и предсказательным моделям.
Однако при использовании полиномиального масштабирования необходимо быть осторожным, так как он может привести к увеличению размерности данных и возникновению проблемы проклятия размерности (curse of dimensionality). Если размерность данных слишком высока, это может привести к увеличению сложности модели и переобучению.
#scaling #scaling #statistical #mean #standarddeviation #datadistribution #normaldistribution
🤕 🤕 🤕 https://boosty.to/denoise_lab/donate - фишки кода, полезные фичи или просто если вы хотите поддержать наш канал.
🔠Какой метод нормализации подходит для данных с нелинейной зависимостью? (Часть_2)
Полиномиальное масштабирование может быть полезным, когда в данных присутствуют квадратичные, кубические или более высокие нелинейные зависимости. Применение полиномиального масштабирования позволяет моделировать и учитывать такие зависимости, что может привести к более точным и предсказательным моделям.
Однако при использовании полиномиального масштабирования необходимо быть осторожным, так как он может привести к увеличению размерности данных и возникновению проблемы проклятия размерности (curse of dimensionality). Если размерность данных слишком высока, это может привести к увеличению сложности модели и переобучению.
#scaling #scaling #statistical #mean #standarddeviation #datadistribution #normaldistribution
Please open Telegram to view this post
VIEW IN TELEGRAM