DenoiseLAB
486 subscribers
1.33K photos
159 videos
3 files
1.57K links
Блог DenoiseLAB (машинное обучение, аналитика)

Информация в канале служит только для ознакомления и не является призывом к действию. Не нарушайте законы РФ и других стран. Мы не несем отвественность за ваши действия или бездействия.
Download Telegram
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_201

🔠Что такое mBART ? (Часть_3)

Вот основные особенности mBART:

Многоязычная обработка: mBART обучается на нескольких языках и может использоваться для машинного перевода между различными языковыми парами. Она позволяет обрабатывать тексты на разных языках с использованием единой модели.

Общий словарь: mBART использует общий словарь, который содержит токены из всех поддерживаемых языков. Это позволяет модели обрабатывать тексты на разных языках с использованием одних и тех же внутренних представлений.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_201

🔠Что такое mBART ? (Часть_4)

Вот основные особенности mBART:

Языковая кодировка: mBART использует специальные токены для указания языка и направления перевода. Это помогает модели правильно интерпретировать входные и выходные последовательности текста и выполнять переводы между разными языками.

Fine-tuning: Подобно BART, mBART может быть дообучена на задачах, специфичных для конкретной задачи, таких как машинный перевод или суммаризация.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_202

🔠Что такое deBERTa ? (Часть_1)

DeBERTa (Deep Bidirectional Transformers for Language Understanding) - это модель глубокого обучения, основанная на трансформерах, которая предназначена для решения задач обработки естественного языка (NLP). DeBERTa является эволюционным улучшением модели BERT (Bidirectional Encoder Representations from Transformers) и включает в себя ряд улучшений.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_202

🔠Что такое deBERTa ? (Часть_2)

Одним из ключевых улучшений DeBERTa является различная обработка маскированных (замаскированных) токенов. В модели BERT маскированные токены обрабатываются одинаковым образом, что может приводить к потере информации. В DeBERTa используется динамическое выравнивание внимания для маскированных токенов, что позволяет модели лучше улавливать зависимости и контекст в предложениях.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_202

🔠Что такое deBERTa ? (Часть_3)

DeBERTa также вводит новую архитектуру для моделирования отношений между токенами, называемую "реляционным моделированием". Это позволяет модели более эффективно улавливать зависимости и взаимодействия между токенами в предложениях.

Основная идея DeBERTa состоит в улучшении способности модели понимать и моделировать глубокие зависимости и контекстуальные взаимосвязи в тексте. Это позволяет модели достигать лучших результатов в различных задачах NLP, таких как классификация текста, извлечение информации, вопросно-ответные системы и многие другие.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_203

🔠Что такое Turing_-NLG ? (Часть_1)

Turing-NLG (Turing Natural Language Generation) - это система генерации естественного языка, разработанная компанией OpenAI. Она названа в честь английского математика и логика Алана Тьюринга.

Turing-NLG основана на архитектуре GPT (Generative Pre-trained Transformer) и является одной из версий модели GPT, разработанных OpenAI. Она обучена на огромном объеме текстовых данных и способна генерировать качественные тексты в различных стилях и жанрах.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_203

🔠Что такое Turing_-NLG ? (Часть_2)

Одно из главных преимуществ Turing-NLG заключается в его способности к контролируемой генерации текста. С помощью подхода, называемого "промпт-инжиниринг" (prompt engineering), пользователи могут задавать системе конкретные инструкции или контекст, чтобы получать желаемые результаты. Например, можно попросить систему продолжить предложение, ответить на вопрос, описать изображение и т.д.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_204

🔠Что такое ALBERT (A Lite BERT) ? (Часть_1)

ALBERT является уменьшенной версией BERT, которая использует параметризацию параллельного масштабирования и параллельного обучения для уменьшения количества параметров и вычислительной сложности.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_204

🔠Что такое ALBERT (A Lite BERT) ? (Часть_2)

Она использует два ключевых принципа для уменьшения количества параметров и вычислительной сложности:

- Факторизация параметризации эмбеддингов: В ALBERT матрица эмбеддингов разделяется между векторами входного слоя с относительно небольшой размерностью (например, 128), в то время как вектора скрытого слоя используют большие размерности (768, как в случае с BERT'ом, и больше). Это позволяет существенно уменьшить количество параметров проекционного блока, снижая при этом количество параметров на 80%.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration
200 Вопросов по Машинному обучению (Machine Learning) - Вопрос_205

🔠Что такое SpanBERT ? (Часть_1)

SpanBERT — это предварительно обученный метод, разработанный для лучшего представления и предсказания интервалов текста. В отличие от BERT, который маскирует случайные токены, SpanBERT маскирует случайные непрерывные интервалы (spans) текста. Кроме того, в SpanBERT используется новый подход к обучению границ интервалов (Span-Boundary Objective, SBO), чтобы модель училась предсказывать весь маскированный интервал, используя только контекст, в котором он появляется.

https://boosty.to/denoise_lab/donate - поддержать наш канал.

#DeepLearning #NeuralNetworks #NaturalLanguageProcessing #SequenceModeling #ModelArchitecture #LongRangeDependencies #TextGeneration