Дистилляция - процесс передачи знаний от одной модели к другой.
Дистилляция используется для уменьшения размера и сложности модели, сохраняя при этом её точность.
Дистилляция применяется для улучшения генеративных моделей, таких как Stable Diffusion.
Дистилляция позволяет создавать более компактные и эффективные модели, сохраняя при этом качество генерации.
Дистилляция может быть выполнена через обучение на наборе переноса или через использование средневзвешенного значения целевых функций.
В байесовском выводе дистилляция основана на оптимизации параметров модели ученика с использованием вариационного вывода.
Дистилляция в генеративных моделях изображений направлена на оптимизацию моделей для конкретных задач и снижение сложности.
Stable Diffusion использует ансамбль моделей для генерации изображений, что требует дистилляции для улучшения производительности.
Дистилляция может оптимизировать нагрузку на ресурсы и уменьшить время генерации.
Использование токенизации запросов и детектора бинарных векторов признаков может улучшить производительность.
Дистилляция позволила уменьшить размер модели и время генерации, сохранив качество генерации.
https://habr.com/ru/articles/755644/
#articles #analysis #model #distilation
Please open Telegram to view this post
VIEW IN TELEGRAM
Хабр
Оптимизация генеративной модели на основе дистилляции
Одним из важнейших направлений работы над моделями машинного обучения является их оптимизация. Оптимизированная модель работает быстрее, требует меньше вычислительных ресурсов, и как следствие —...