Forwarded from Deleted Account
#R_COD
@R_Experts
@Data_Experts
https://telegram.me/Data_Experts
https://telegram.me/R_Experts
deeper.tree<- rpart(INCOME_C4 ~ ., data = train.data3[,-1], method = "class", cp = .00001, minsplit =5)
options(digits=8)
printcp(deeper.tree)
which.min(deeper.tree$cptable[,"xerror"])
options(digits=8)
X.E=deeper.tree$cptable[8:19,"xerror"]
options(digits=8)
X.S=deeper.tree$cptable[8:19,"xstd"]
CP.OPT=X.E+X.S
which.min(CP.OPT)
OPT.POINT=abs(deeper.tree$cptable[c(1:9,11:29),"xerror"] -deeper.tree$cptable[10,"xerror"])
which.min(OPT.POINT)
cv.tree31<-rpart(INCOME_C4~.,data = train.data3[,-1] ,method = "class",
cp = 0.005876592, minsplit =5,xval =5, model=TRUE)
prp(cv.tree31,type =0,extra = 1,under = T,split.font = 1,
varlen = -10,cex=.7,box.palette=c("mediumvioletred"))
cv.tree31.pred.train <- predict(cv.tree31,train.data3[,-1],type = "class")
confusionMatrix(cv.tree31.pred.train,train.data3[,-1]$INCOME_C4)
cv.tree31v<-rpart(INCOME_C4~., data = valid.data3[,-1] ,method = "class", cp =0.005876592 , minsplit =5,
xval =5, model=TRUE)
prp(cv.tree31v,type =0,extra = 1,under = T,split.font = 1,
varlen = -10,cex=.7,box.palette=c("mediumvioletred"))
#Validation
cv.tree31.pred.valid <- predict(cv.tree31v,valid.data3[,-1],type = "class")
confusionMatrix(cv.tree31.pred.valid,valid.data3[,-1]$INCOME_C4)
@R_Experts
@Data_Experts
https://telegram.me/Data_Experts
https://telegram.me/R_Experts
Telegram
Data Experts
_______________
Related channel :
@R_Experts
________________
Contact us :
@javad_vhd
@farzadHEYdaryy
________________
Instagram: data_experts
Web: dataexperts.ir
Related channel :
@R_Experts
________________
Contact us :
@javad_vhd
@farzadHEYdaryy
________________
Instagram: data_experts
Web: dataexperts.ir