✨SVG-T2I: Scaling Up Text-to-Image Latent Diffusion Model Without Variational Autoencoder
📝 Summary:
SVG-T2I enables high-quality text-to-image synthesis directly in the Visual Foundation Model feature domain. This scaled framework achieves competitive performance without a variational autoencoder, validating VFM representations for generative tasks.
🔹 Publication Date: Published on Dec 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2512.11749
• PDF: https://arxiv.org/pdf/2512.11749
• Github: https://github.com/KlingTeam/SVG-T2I
🔹 Models citing this paper:
• https://huggingface.co/KlingTeam/SVG-T2I
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#TextToImage #DiffusionModels #GenerativeAI #VisualFoundationModels #DeepLearning
📝 Summary:
SVG-T2I enables high-quality text-to-image synthesis directly in the Visual Foundation Model feature domain. This scaled framework achieves competitive performance without a variational autoencoder, validating VFM representations for generative tasks.
🔹 Publication Date: Published on Dec 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2512.11749
• PDF: https://arxiv.org/pdf/2512.11749
• Github: https://github.com/KlingTeam/SVG-T2I
🔹 Models citing this paper:
• https://huggingface.co/KlingTeam/SVG-T2I
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#TextToImage #DiffusionModels #GenerativeAI #VisualFoundationModels #DeepLearning