ML Research Hub
32.8K subscribers
4.15K photos
250 videos
23 files
4.49K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
SVG-T2I: Scaling Up Text-to-Image Latent Diffusion Model Without Variational Autoencoder

📝 Summary:
SVG-T2I enables high-quality text-to-image synthesis directly in the Visual Foundation Model feature domain. This scaled framework achieves competitive performance without a variational autoencoder, validating VFM representations for generative tasks.

🔹 Publication Date: Published on Dec 12

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2512.11749
• PDF: https://arxiv.org/pdf/2512.11749
• Github: https://github.com/KlingTeam/SVG-T2I

🔹 Models citing this paper:
https://huggingface.co/KlingTeam/SVG-T2I

==================================

For more data science resources:
https://t.me/DataScienceT

#TextToImage #DiffusionModels #GenerativeAI #VisualFoundationModels #DeepLearning