✨FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution
📝 Summary:
FlashVSR introduces the first real-time, one-step streaming diffusion framework for video super-resolution. It addresses high latency and computation through innovations like distillation, sparse attention, and a tiny decoder. FlashVSR achieves state-of-the-art performance with up to 12x speedup.
🔹 Publication Date: Published on Oct 14
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.12747
• PDF: https://arxiv.org/pdf/2510.12747
• Project Page: https://zhuang2002.github.io/FlashVSR/
• Github: https://github.com/OpenImagingLab/FlashVSR
🔹 Models citing this paper:
• https://huggingface.co/JunhaoZhuang/FlashVSR
• https://huggingface.co/JunhaoZhuang/FlashVSR-v1.1
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#FlashVSR #VideoSuperResolution #RealTimeAI #DiffusionModels #ComputerVision
📝 Summary:
FlashVSR introduces the first real-time, one-step streaming diffusion framework for video super-resolution. It addresses high latency and computation through innovations like distillation, sparse attention, and a tiny decoder. FlashVSR achieves state-of-the-art performance with up to 12x speedup.
🔹 Publication Date: Published on Oct 14
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2510.12747
• PDF: https://arxiv.org/pdf/2510.12747
• Project Page: https://zhuang2002.github.io/FlashVSR/
• Github: https://github.com/OpenImagingLab/FlashVSR
🔹 Models citing this paper:
• https://huggingface.co/JunhaoZhuang/FlashVSR
• https://huggingface.co/JunhaoZhuang/FlashVSR-v1.1
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#FlashVSR #VideoSuperResolution #RealTimeAI #DiffusionModels #ComputerVision
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
✨FMA-Net++: Motion- and Exposure-Aware Real-World Joint Video Super-Resolution and Deblurring
📝 Summary:
FMA-Net++ addresses joint video super-resolution and deblurring by modeling motion and dynamic exposure. It employs an exposure-aware sequence architecture, decoupling degradation learning from restoration for top accuracy and efficiency.
🔹 Publication Date: Published on Dec 4
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2512.04390
• PDF: https://arxiv.org/pdf/2512.04390
• Project Page: https://kaist-viclab.github.io/fmanetpp_site/
• Github: https://kaist-viclab.github.io/fmanetpp_site/
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#VideoSuperResolution #VideoDeblurring #ComputerVision #DeepLearning #ImageProcessing
📝 Summary:
FMA-Net++ addresses joint video super-resolution and deblurring by modeling motion and dynamic exposure. It employs an exposure-aware sequence architecture, decoupling degradation learning from restoration for top accuracy and efficiency.
🔹 Publication Date: Published on Dec 4
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2512.04390
• PDF: https://arxiv.org/pdf/2512.04390
• Project Page: https://kaist-viclab.github.io/fmanetpp_site/
• Github: https://kaist-viclab.github.io/fmanetpp_site/
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#VideoSuperResolution #VideoDeblurring #ComputerVision #DeepLearning #ImageProcessing
❤3👍1