ML Research Hub
32.8K subscribers
4.13K photos
243 videos
23 files
4.45K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
💃 GENMO: Generalist Human Motion by NVIDIA 💃

NVIDIA introduces GENMO, a unified generalist model for human motion that seamlessly combines motion estimation and generation within a single framework. GENMO supports conditioning on videos, 2D keypoints, text, music, and 3D keyframes, enabling highly versatile motion understanding and synthesis.

Currently, no official code release is available.

Review:
https://t.ly/Q5T_Y

Paper:
https://lnkd.in/ds36BY49

Project Page:
https://lnkd.in/dAYHhuFU

#NVIDIA #GENMO #HumanMotion #DeepLearning #AI #ComputerVision #MotionGeneration #MachineLearning #MultimodalAI #3DReconstruction


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43
Generative Action Tell-Tales: Assessing Human Motion in Synthesized Videos

📝 Summary:
A new metric evaluates human action in generated videos by using a learned latent space of real-world actions, fusing skeletal geometry and appearance features. It significantly improves temporal and visual correctness assessment, outperforming existing methods and correlating better with human p...

🔹 Publication Date: Published on Dec 1

🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2512.01803
• PDF: https://arxiv.org/pdf/2512.01803
• Project Page: https://xthomasbu.github.io/video-gen-evals/
• Github: https://xthomasbu.github.io/video-gen-evals/

Datasets citing this paper:
https://huggingface.co/datasets/dghadiya/TAG-Bench-Video

==================================

For more data science resources:
https://t.me/DataScienceT

#VideoGeneration #HumanMotion #ComputerVision #AIMetrics #DeepLearning