✨SWE-Lego: Pushing the Limits of Supervised Fine-tuning for Software Issue Resolving
📝 Summary:
SWE-Lego achieves state-of-the-art software issue resolution through a lightweight supervised fine-tuning approach. It uses a high-quality dataset and refined training procedures like error masking and a difficulty-based curriculum, outperforming complex methods. Performance is further boosted by...
🔹 Publication Date: Published on Jan 4
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.01426
• PDF: https://arxiv.org/pdf/2601.01426
• Project Page: https://github.com/SWE-Lego/SWE-Lego
• Github: https://github.com/SWE-Lego/SWE-Lego
🔹 Models citing this paper:
• https://huggingface.co/SWE-Lego/SWE-Lego-Qwen3-8B
• https://huggingface.co/SWE-Lego/SWE-Lego-Qwen3-32B
✨ Datasets citing this paper:
• https://huggingface.co/datasets/SWE-Lego/SWE-Lego-Real-Data
• https://huggingface.co/datasets/SWE-Lego/SWE-Lego-Synthetic-Data
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#SoftwareEngineering #MachineLearning #LLM #FineTuning #AIforCode
📝 Summary:
SWE-Lego achieves state-of-the-art software issue resolution through a lightweight supervised fine-tuning approach. It uses a high-quality dataset and refined training procedures like error masking and a difficulty-based curriculum, outperforming complex methods. Performance is further boosted by...
🔹 Publication Date: Published on Jan 4
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2601.01426
• PDF: https://arxiv.org/pdf/2601.01426
• Project Page: https://github.com/SWE-Lego/SWE-Lego
• Github: https://github.com/SWE-Lego/SWE-Lego
🔹 Models citing this paper:
• https://huggingface.co/SWE-Lego/SWE-Lego-Qwen3-8B
• https://huggingface.co/SWE-Lego/SWE-Lego-Qwen3-32B
✨ Datasets citing this paper:
• https://huggingface.co/datasets/SWE-Lego/SWE-Lego-Real-Data
• https://huggingface.co/datasets/SWE-Lego/SWE-Lego-Synthetic-Data
==================================
For more data science resources:
✓ https://t.me/DataScienceT
#SoftwareEngineering #MachineLearning #LLM #FineTuning #AIforCode
arXiv.org
SWE-Lego: Pushing the Limits of Supervised Fine-tuning for...
We present SWE-Lego, a supervised fine-tuning (SFT) recipe designed to achieve state-ofthe-art performance in software engineering (SWE) issue resolving. In contrast to prevalent methods that rely...