π Introduction to Transformers for NLP (2022)
π Download Link: https://file.lu/d/1afC
π¬ Tags: #Transformers #NLP
βοΈ β interaction = β books
β Click here π: Surprise π
π Download Link: https://file.lu/d/1afC
π¬ Tags: #Transformers #NLP
βοΈ β interaction = β books
β Click here π: Surprise π
β€βπ₯2π1
π Transformers for Machine Learning (2022)
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/46
π¬ Tags: #Transformers
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/46
π¬ Tags: #Transformers
USEFUL CHANNELS FOR YOU
β€βπ₯5π3β€1
π Transformers for Natural Language Processing (2022)
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/265
π¬ Tags: #Transformers #NLP
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/265
π¬ Tags: #Transformers #NLP
USEFUL CHANNELS FOR YOU
π7β€2
π Natural Language Processing with Transformers (2022)
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/325
π¬ Tags: #Transformers #NLP
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/325
π¬ Tags: #Transformers #NLP
USEFUL CHANNELS FOR YOU
π7β€5π―2
π Transformers (2024)
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/1588
π¬ Tags: #Transformers
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
1β£ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.me/c/1854405158/1588
π¬ Tags: #Transformers
π BEST DATA SCIENCE CHANNELS ON TELEGRAM π
π2β€1
This media is not supported in your browser
VIEW IN TELEGRAM
how transformers remember facts
#Transformers #NLP #LLM #MachineLearning #DeepLearning #AI #ArtificialIntelligence #TechInnovation #DataScience #NeuralNetworks
https://t.me/DataScienceM
#Transformers #NLP #LLM #MachineLearning #DeepLearning #AI #ArtificialIntelligence #TechInnovation #DataScience #NeuralNetworks
https://t.me/DataScienceM
β€8π4
Discover an incredible LLM course designed to deepen your understanding of the transformer architecture and its role in building powerful Large Language Models (LLMs). This course breaks down complex concepts into easy-to-grasp modules, making it perfect for both beginners and advanced learners. Dive into the mechanics of attention mechanisms, encoding-decoding processes, and much more. Elevate your AI knowledge and stay ahead in the world of machine learning!
Enroll Free: https://www.deeplearning.ai/short-courses/how-transformer-llms-work/
Enroll Free: https://www.deeplearning.ai/short-courses/how-transformer-llms-work/
#LLMCourse #Transformers #MachineLearning #AIeducation #DeepLearning #TechSkills #ArtificialIntelligence
https://t.me/DataScienceM
π5
This media is not supported in your browser
VIEW IN TELEGRAM
Last week we introduced how transformer LLMs work, this week we go deeper into one of its key elementsβthe attention mechanism, in a new #OpenSourceAI course, Attention in Transformers: Concepts and #Code in #PyTorch
Enroll Free: https://www.deeplearning.ai/short-courses/attention-in-transformers-concepts-and-code-in-pytorch/
Enroll Free: https://www.deeplearning.ai/short-courses/attention-in-transformers-concepts-and-code-in-pytorch/
#LLMCourse #Transformers #MachineLearning #AIeducation #DeepLearning #TechSkills #ArtificialIntelligence
https://t.me/DataScienceM
β€4π3
Forwarded from Machine Learning with Python
course lecture on building Transformers from first principles:
https://www.dropbox.com/scl/fi/jhfgy8dnnvy5qq385tnms/lectureattentionneuralnetworks.pdf?rlkey=fddnkonsez76mf8bzider3hrv&dl=0
The #PyTorch notebooks also demonstrate how to implement #Transformers from scratch:
https://github.com/xbresson/CS52422025/tree/main/labslecture07
https://www.dropbox.com/scl/fi/jhfgy8dnnvy5qq385tnms/lectureattentionneuralnetworks.pdf?rlkey=fddnkonsez76mf8bzider3hrv&dl=0
The #PyTorch notebooks also demonstrate how to implement #Transformers from scratch:
https://github.com/xbresson/CS52422025/tree/main/labslecture07
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
π8
Machine Learning
Photo
# Learning rate scheduler for transformers
def lr_schedule(step, d_model=512, warmup_steps=4000):
arg1 = step ** -0.5
arg2 = step * (warmup_steps ** -1.5)
return (d_model ** -0.5) * min(step ** -0.5, step * warmup_steps ** -1.5)
---
### **π What's Next?
In **Part 5, we'll cover:
β‘οΈ Generative Models (GANs, VAEs)
β‘οΈ Reinforcement Learning with PyTorch
β‘οΈ Model Optimization & Deployment
β‘οΈ PyTorch Lightning Best Practices
#PyTorch #DeepLearning #NLP #Transformers π
Practice Exercises:
1. Implement a character-level language model with LSTM
2. Add attention visualization to a sentiment analysis model
3. Build a transformer from scratch for machine translation
4. Compare teacher forcing ratios in seq2seq training
5. Implement beam search for decoder inference
# Character-level LSTM starter
class CharLSTM(nn.Module):
def __init__(self, vocab_size, hidden_size, n_layers):
super().__init__()
self.embed = nn.Embedding(vocab_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, vocab_size)
def forward(self, x, hidden=None):
x = self.embed(x)
out, hidden = self.lstm(x, hidden)
return self.fc(out), hidden
π₯2β€1
π Vision Transformer (ViT) Tutorial β Part 1: From CNNs to Transformers β The Revolution in Computer Vision
Let's start: https://hackmd.io/@husseinsheikho/vit-1
Let's start: https://hackmd.io/@husseinsheikho/vit-1
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #NeuralNetworks #ImageClassification #AttentionIsAllYouNeed
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€3π1
π Vision Transformer (ViT) Tutorial β Part 2: Implementing ViT from Scratch in PyTorch
Let's start: https://hackmd.io/@husseinsheikho/vit-2
Let's start: https://hackmd.io/@husseinsheikho/vit-2
#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
π± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
β€2
π Vision Transformer (ViT) Tutorial β Part 3: Pretraining, Transfer Learning & Real-World Applications
Let's start: https://hackmd.io/@husseinsheikho/vit-3
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
Let's start: https://hackmd.io/@husseinsheikho/vit-3
#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
β€3
π Vision Transformer (ViT) Tutorial β Part 5: Efficient Vision Transformers β MobileViT, TinyViT & Edge Deployment
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€2