import pandas as pd
s = pd.Series(['A', 'B', 'A', 'C', 'A', 'B'])
print(s.value_counts())
A 3
B 2
C 1
dtype: int64
#DataManipulation #Transformation
---
21.
series.unique()Returns an array of unique values in a Series.
import pandas as pd
s = pd.Series(['A', 'B', 'A', 'C', 'A', 'B'])
print(s.unique())
['A' 'B' 'C']
---
22.
df.sort_values()Sorts a DataFrame by the values of one or more columns.
import pandas as pd
data = {'Name': ['Charlie', 'Alice', 'Bob'], 'Age': [35, 25, 30]}
df = pd.DataFrame(data)
sorted_df = df.sort_values(by='Age')
print(sorted_df)
Name Age
1 Alice 25
2 Bob 30
0 Charlie 35
---
23.
df.groupby()Groups a DataFrame using a mapper or by a Series of columns for aggregation.
import pandas as pd
data = {'Dept': ['HR', 'IT', 'HR', 'IT'], 'Salary': [70, 85, 75, 90]}
df = pd.DataFrame(data)
grouped = df.groupby('Dept').mean()
print(grouped)
Salary
Dept
HR 72.5
IT 87.5
---
24.
df.agg()Applies one or more aggregations over the specified axis.
import pandas as pd
data = {'Dept': ['HR', 'IT', 'HR', 'IT'], 'Salary': [70, 85, 75, 90]}
df = pd.DataFrame(data)
agg_results = df.groupby('Dept')['Salary'].agg(['mean', 'sum'])
print(agg_results)
mean sum
Dept
HR 72.5 145
IT 87.5 175
#Aggregation #Grouping #Sorting
---
25.
df.apply()Applies a function along an axis of the DataFrame.
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})
# Apply a function to double each value in column 'A'
df['A_doubled'] = df['A'].apply(lambda x: x * 2)
print(df)
A B A_doubled
0 1 10 2
1 2 20 4
2 3 30 6
---
26.
pd.merge()Merges two DataFrames based on a common column or index, similar to a SQL join.
import pandas as pd
df1 = pd.DataFrame({'ID': [1, 2], 'Name': ['Alice', 'Bob']})
df2 = pd.DataFrame({'ID': [1, 2], 'Role': ['Engineer', 'Analyst']})
merged_df = pd.merge(df1, df2, on='ID')
print(merged_df)
ID Name Role
0 1 Alice Engineer
1 2 Bob Analyst
---
27.
pd.concat()Concatenates (stacks) pandas objects along a particular axis.
import pandas as pd
df1 = pd.DataFrame({'A': ['A0'], 'B': ['B0']})
df2 = pd.DataFrame({'A': ['A1'], 'B': ['B1']})
concatenated_df = pd.concat([df1, df2])
print(concatenated_df)
A B
0 A0 B0
0 A1 B1
---
28.
df.pivot_table()Creates a spreadsheet-style pivot table as a DataFrame.
❤2
Top 30 MATLAB Image Processing Functions
#MATLAB #ImageProcessing #Basics
#1.
Reads an image from a file into a matrix.
#2.
Displays an image in a figure window.
#3.
Writes an image matrix to a file.
#4.
Returns the dimensions of the image matrix (rows, columns, color channels).
#5.
Converts an RGB color image to a grayscale intensity image.
---
#MATLAB #ImageProcessing #Conversion #Transformation
#6.
Converts an image to double-precision format, scaling data to the range [0, 1].
#7.
Resizes an image to a specified size.
#8.
Rotates an image by a specified angle.
#9.
Crops an image to a specified rectangle.
#10.
Converts an RGB image to the Hue-Saturation-Value (HSV) color space.
---
#MATLAB #ImageProcessing #Enhancement
#11.
Displays the histogram of an image, showing the distribution of pixel intensity values.
#MATLAB #ImageProcessing #Basics
#1.
imread()Reads an image from a file into a matrix.
img = imread('peppers.png');
disp('Image "peppers.png" loaded into variable "img".');Image "peppers.png" loaded into variable "img".
#2.
imshow()Displays an image in a figure window.
img = imread('peppers.png');
imshow(img);
title('Peppers Image');Output: A new figure window opens, displaying the 'peppers.png' image with the title "Peppers Image".
#3.
imwrite()Writes an image matrix to a file.
img = imread('cameraman.tif');
imwrite(img, 'my_cameraman.jpg');
disp('Image saved as my_cameraman.jpg');Image saved as my_cameraman.jpg
#4.
size()Returns the dimensions of the image matrix (rows, columns, color channels).
rgb_img = imread('peppers.png');
gray_img = imread('cameraman.tif');
size_rgb = size(rgb_img);
size_gray = size(gray_img);
disp(['Size of RGB image: ', num2str(size_rgb)]);
disp(['Size of grayscale image: ', num2str(size_gray)]);Size of RGB image: 384 512 3
Size of grayscale image: 256 256
#5.
rgb2gray()Converts an RGB color image to a grayscale intensity image.
rgb_img = imread('peppers.png');
gray_img = rgb2gray(rgb_img);
imshow(gray_img);
title('Grayscale Peppers');Output: A figure window displays the grayscale version of the peppers image.
---
#MATLAB #ImageProcessing #Conversion #Transformation
#6.
im2double()Converts an image to double-precision format, scaling data to the range [0, 1].
img_uint8 = imread('cameraman.tif');
img_double = im2double(img_uint8);
disp(['Max value of original image: ', num2str(max(img_uint8(:)))]);
disp(['Max value of double image: ', num2str(max(img_double(:)))]);Max value of original image: 253
Max value of double image: 0.99216
#7.
imresize()Resizes an image to a specified size.
img = imread('cameraman.tif');
resized_img = imresize(img, 0.5); % Resize to 50% of original size
imshow(resized_img);
title('Resized Cameraman');Output: A figure window displays the cameraman image at half its original size.
#8.
imrotate()Rotates an image by a specified angle.
img = imread('cameraman.tif');
rotated_img = imrotate(img, 30, 'bilinear', 'crop');
imshow(rotated_img);
title('Rotated 30 Degrees');Output: A figure window displays the cameraman image rotated by 30 degrees, cropped to the original size.
#9.
imcrop()Crops an image to a specified rectangle.
img = imread('peppers.png');
% [xmin ymin width height]
cropped_img = imcrop(img, [100 80 250 200]);
imshow(cropped_img);
title('Cropped Image');Output: A figure window displays only the rectangular section specified from the peppers image.
#10.
rgb2hsv()Converts an RGB image to the Hue-Saturation-Value (HSV) color space.
rgb_img = imread('peppers.png');
hsv_img = rgb2hsv(rgb_img);
hue_channel = hsv_img(:,:,1); % Extract the Hue channel
imshow(hue_channel);
title('Hue Channel of Peppers Image');Output: A figure window displays the Hue channel of the peppers image as a grayscale image.
---
#MATLAB #ImageProcessing #Enhancement
#11.
imhist()Displays the histogram of an image, showing the distribution of pixel intensity values.
❤1