Machine Learning
39.3K subscribers
3.87K photos
32 videos
42 files
1.31K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
fig, ax = plt.subplots() # Single subplot
fig, axes = plt.subplots(2, 2) # 2x2 grid of subplots

• Plot on a specific subplot (Axes object).
axes[0, 0].plot(x, np.sin(x))

• Set the title for a specific subplot.
axes[0, 0].set_title('Subplot 1')

• Set labels for a specific subplot.
axes[0, 0].set_xlabel('X-axis')
axes[0, 0].set_ylabel('Y-axis')

• Add a legend to a specific subplot.
axes[0, 0].legend(['Sine'])

• Add a main title for the entire figure.
fig.suptitle('Main Figure Title')

• Automatically adjust subplot parameters for a tight layout.
plt.tight_layout()

• Share x or y axes between subplots.
fig, axes = plt.subplots(2, 1, sharex=True)

• Get the current Axes instance.
ax = plt.gca()

• Create a second y-axis that shares the x-axis.
ax2 = ax.twinx()


VI. Specialized Plots

• Create a contour plot.
X, Y = np.meshgrid(x, x)
Z = np.sin(X) * np.cos(Y)
plt.contour(X, Y, Z, levels=10)

• Create a filled contour plot.
plt.contourf(X, Y, Z)

• Create a stream plot for vector fields.
U, V = np.cos(X), np.sin(Y)
plt.streamplot(X, Y, U, V)

• Create a 3D surface plot.
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z)


#Python #Matplotlib #DataVisualization #DataScience #Plotting

━━━━━━━━━━━━━━━
By: @DataScienceM