Machine Learning
39.3K subscribers
3.87K photos
32 videos
42 files
1.31K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
20x faster KMeans with Faiss!!

#KMeans uses a slow, exhaustive search to find the nearest centroids.

#Faiss uses "Inverted Index"β€”an optimized data structure to store and index data points for approximate neighbor search.

#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras

https://t.me/DataScienceM
πŸ‘6❀2πŸ”₯1
πŸ’‘ Python: Simple K-Means Clustering Project

K-Means is a popular unsupervised machine learning algorithm used to partition n observations into k clusters, where each observation belongs to the cluster with the nearest mean (centroid). This simple project demonstrates K-Means on the classic Iris dataset using scikit-learn to group similar flower species based on their measurements.

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import numpy as np

# 1. Load the Iris dataset
iris = load_iris()
X = iris.data # Features (sepal length, sepal width, petal length, petal width)
y = iris.target # True labels (0, 1, 2 for different species) - not used by KMeans

# 2. (Optional but recommended) Scale the features
# K-Means is sensitive to the scale of features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 3. Define and train the K-Means model
# We know there are 3 species in Iris, so we set n_clusters=3
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10) # n_init is important for robust results
kmeans.fit(X_scaled)

# 4. Get the cluster assignments for each data point
labels = kmeans.labels_

# 5. Get the coordinates of the cluster centroids
centroids = kmeans.cluster_centers_

# 6. Visualize the clusters (using first two features for simplicity)
plt.figure(figsize=(8, 6))

# Plot each cluster
colors = ['red', 'green', 'blue']
for i in range(3):
plt.scatter(X_scaled[labels == i, 0], X_scaled[labels == i, 1],
s=50, c=colors[i], label=f'Cluster {i+1}', alpha=0.7)

# Plot the centroids
plt.scatter(centroids[:, 0], centroids[:, 1],
s=200, marker='X', c='black', label='Centroids', edgecolor='white')

plt.title('K-Means Clustering on Iris Dataset (Scaled Features)')
plt.xlabel('Scaled Sepal Length')
plt.ylabel('Scaled Sepal Width')
plt.legend()
plt.grid(True)
plt.show()

# You can also compare with true labels (for evaluation, not part of clustering process itself)
# print("True labels:", y)
# print("K-Means labels:", labels)


Code explanation: This script loads the Iris dataset, scales its features using StandardScaler, and then applies KMeans to group the data into 3 clusters. It visualizes the resulting clusters and their centroids using a scatter plot with the first two scaled features.

#Python #MachineLearning #KMeans #Clustering #DataScience

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
πŸ“Œ The Machine Learning β€œAdvent Calendar” Day 4: k-Means in Excel

πŸ—‚ Category: MACHINE LEARNING

πŸ•’ Date: 2025-12-04 | ⏱️ Read time: 7 min read

Discover how to implement the k-Means clustering algorithm, a fundamental machine learning technique, using only Microsoft Excel. This guide, part of a "Machine Learning Advent Calendar" series, walks through building a training algorithm from scratch in a familiar spreadsheet environment, demystifying what "real" ML looks like in practice.

#MachineLearning #kMeans #Excel #DataScience #Tutorial
❀2