Machine Learning
39K subscribers
3.76K photos
31 videos
41 files
1.29K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho
Download Telegram
Python tip:
Use np.polyval() to evaluate a polynomial at specific values.

import numpy as np
poly_coeffs = np.array([3, 0, 1]) # Represents 3x^2 + 0x + 1
x_values = np.array([0, 1, 2])
y_values = np.polyval(poly_coeffs, x_values)
print(y_values) # Output: [ 1 4 13] (3*0^2+1, 3*1^2+1, 3*2^2+1)


Python tip:
Use np.polyfit() to find the coefficients of a polynomial that best fits a set of data points.

import numpy as np
x = np.array([0, 1, 2, 3])
y = np.array([0, 0.8, 0.9, 0.1])
coefficients = np.polyfit(x, y, 2) # Fit a 2nd degree polynomial
print(coefficients)


Python tip:
Use np.clip() to limit values in an array to a specified range, as an instance method.

import numpy as np
arr = np.array([1, 10, 3, 15, 6])
clipped_arr = arr.clip(min=3, max=10)
print(clipped_arr)


Python tip:
Use np.squeeze() to remove single-dimensional entries from the shape of an array.

import numpy as np
arr = np.zeros((1, 3, 1, 4))
squeezed_arr = np.squeeze(arr) # Removes axes of length 1
print(squeezed_arr.shape) # Output: (3, 4)


Python tip:
Create a new array with an inserted axis using np.expand_dims().

import numpy as np
arr = np.array([1, 2, 3]) # Shape (3,)
expanded_arr = np.expand_dims(arr, axis=0) # Add a new axis at position 0
print(expanded_arr.shape) # Output: (1, 3)


Python tip:
Use np.ptp() (peak-to-peak) to find the range (max - min) of an array.

import numpy as np
arr = np.array([1, 5, 2, 8, 3])
peak_to_peak = np.ptp(arr)
print(peak_to_peak) # Output: 7 (8 - 1)


Python tip:
Use np.prod() to calculate the product of array elements.

import numpy as np
arr = np.array([1, 2, 3, 4])
product = np.prod(arr)
print(product) # Output: 24 (1 * 2 * 3 * 4)


Python tip:
Use np.allclose() to compare two arrays for equality within a tolerance.

import numpy as np
a = np.array([1.0, 2.0])
b = np.array([1.00000000001, 2.0])
print(np.allclose(a, b)) # Output: True


Python tip:
Use np.array_split() to split an array into N approximately equal sub-arrays.

import numpy as np
arr = np.arange(7)
split_arr = np.array_split(arr, 3) # Split into 3 parts
print(split_arr)


#NumPyTips #PythonNumericalComputing #ArrayManipulation #DataScience #MachineLearning #PythonTips #NumPyForBeginners #Vectorization #LinearAlgebra #StatisticalAnalysis

━━━━━━━━━━━━━━━
By: @DataScienceM