Code With Python
39K subscribers
841 photos
24 videos
22 files
746 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Topic: Python – Reading Images from Datasets and Organizing Them (Part 2): Using PyTorch and TensorFlow Data Loaders

---

1. Using PyTorch’s `ImageFolder` and `DataLoader`

PyTorch provides an easy way to load image datasets organized in folders by classes.

from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# Define transformations (resize, normalize, convert to tensor)
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])

dataset = datasets.ImageFolder(root='dataset/', transform=transform)

# Create DataLoader for batching and shuffling
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

# Access class names
class_names = dataset.classes
print(class_names)


---

2. Iterating Through DataLoader

for images, labels in dataloader:
print(images.shape) # (batch_size, 3, 128, 128)
print(labels)
# Use images and labels for training or validation
break


---

3. Using TensorFlow `image_dataset_from_directory`

TensorFlow Keras also provides utilities for loading datasets organized in folders.

import tensorflow as tf

dataset = tf.keras.preprocessing.image_dataset_from_directory(
'dataset/',
image_size=(128, 128),
batch_size=32,
label_mode='int' # can be 'categorical', 'binary', or None
)

class_names = dataset.class_names
print(class_names)

for images, labels in dataset.take(1):
print(images.shape)
print(labels)


---

4. Dataset Splitting

You can split datasets into training and validation sets easily:

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
'dataset/',
validation_split=0.2,
subset="training",
seed=123,
image_size=(128, 128),
batch_size=32
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
'dataset/',
validation_split=0.2,
subset="validation",
seed=123,
image_size=(128, 128),
batch_size=32
)


---

5. Summary

PyTorch’s ImageFolder + DataLoader offers a quick way to load and batch datasets.

• TensorFlow’s image\_dataset\_from\_directory provides similar high-level dataset loading.

• Both allow easy transformations, batching, and shuffling.

---

Exercise

• Write code to normalize images in TensorFlow dataset using map() with Rescaling.

---

#Python #DatasetHandling #PyTorch #TensorFlow #ImageProcessing

https://t.me/DataScience4
4
Topic: Python – Reading Images from Datasets and Organizing Them (Part 3): Custom Dataset Class and Data Augmentation

---

1. Creating a Custom Dataset Class (PyTorch)

Sometimes you need more control over how images and labels are loaded and processed. You can create a custom dataset class by extending torch.utils.data.Dataset.

import os
from PIL import Image
from torch.utils.data import Dataset

class CustomImageDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.image_paths = []
self.labels = []
self.class_to_idx = {}

classes = sorted(os.listdir(root_dir))
self.class_to_idx = {cls_name: idx for idx, cls_name in enumerate(classes)}

for cls_name in classes:
cls_dir = os.path.join(root_dir, cls_name)
for img_name in os.listdir(cls_dir):
img_path = os.path.join(cls_dir, img_name)
self.image_paths.append(img_path)
self.labels.append(self.class_to_idx[cls_name])

def __len__(self):
return len(self.image_paths)

def __getitem__(self, idx):
img_path = self.image_paths[idx]
image = Image.open(img_path).convert("RGB")
label = self.labels[idx]

if self.transform:
image = self.transform(image)

return image, label


---

2. Using Data Augmentation with `transforms`

Data augmentation helps improve model generalization by artificially increasing dataset diversity.

from torchvision import transforms

transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])


Pass this transform to the custom dataset:

dataset = CustomImageDataset(root_dir='dataset/', transform=transform)


---

3. Loading Dataset with DataLoader

from torch.utils.data import DataLoader

dataloader = DataLoader(dataset, batch_size=32, shuffle=True)


---

4. Summary

• Custom dataset classes offer flexibility in how data is loaded and labeled.

• Data augmentation techniques such as flipping and rotation can be applied using torchvision transforms.

• Use DataLoader for batching and shuffling during training.

---

Exercise

• Extend the custom dataset to handle grayscale images and apply a random brightness adjustment transform.

---

#Python #DatasetHandling #PyTorch #DataAugmentation #ImageProcessing

https://t.me/DataScience4
2