Code With Python
39.1K subscribers
853 photos
25 videos
22 files
756 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Django Features and Libraries - course

Exploring Django Features and Libraries
The "Django Features and Libraries" course is designed to help learners deepen their understanding of Django by exploring its advanced features and built-in libraries. Django is a high-level Python web framework that promotes rapid development and clean, pragmatic design. This course provides hands-on experience in leveraging Django’s powerful tools to build scalable, efficient, and secure web applications.

Enroll Free: https://www.coursera.org/learn/django-features-libraries

#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience #django

https://t.me/DataScience4
πŸ‘6
Data Management With Python, SQLite, and SQLAlchemy

In this tutorial, you’ll learn how to use:

1⃣ Flat files for data storage
πŸ”’ SQL to improve access to persistent data
πŸ”’ SQLite for data storage
πŸ”’ SQLAlchemy to work with data as Python objects

Enroll Free: https://realpython.com/python-sqlite-sqlalchemy/

#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience #django #SQLAlchemy #SQLite #SQL

https://t.me/DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘8
In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and moreβ€”covering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.

πŸ“š Adding Elements
⦁ append(x): Adds a single element to the end.

  lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]


⦁ extend(iterable): Adds all elements from an iterable to the end.

  lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]


⦁ insert(i, x): Inserts x at index i (shifts elements right).

  lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]


πŸ“š Removing Elements
⦁ remove(x): Removes the first occurrence of x (raises ValueError if not found).

  lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]


⦁ pop(i=-1): Removes and returns the element at index i (default: last).

  lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]


⦁ clear(): Removes all elements.

  lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []


πŸ“š Searching and Counting
⦁ count(x): Returns the number of occurrences of x.

  lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2


⦁ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).

  lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1


πŸ“š Ordering and Copying
⦁ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).

  lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]


⦁ reverse(): Reverses the elements in place.

  lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]


⦁ copy(): Returns a shallow copy of the list.

  lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]


πŸ“š Built-in Functions for Lists (Common Cases)
⦁ len(lst): Returns the number of elements.

  lst = [1, 2, 3]
print(len(lst)) # Output: 3


⦁ min(lst): Returns the smallest element (raises ValueError if empty).

  lst = [3, 1, 2]
print(min(lst)) # Output: 1


⦁ max(lst): Returns the largest element.

  lst = [3, 1, 2]
print(max(lst)) # Output: 3


⦁ sum(lst[, start=0]): Sums the elements (start adds an offset).

  lst = [1, 2, 3]
print(sum(lst)) # Output: 6


⦁ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).

  lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]


These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.

#python #lists #datastructures #methods #examples #programming

⭐ @DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
❀6
In Python, the collections module offers specialized container datatypes that solve real-world coding challenges with elegance and efficiency. These tools are interview favorites for optimizing time complexity and writing clean, professional code! πŸ’‘
import collections  

# defaultdict - Eliminate key errors with auto-initialization
from collections import defaultdict
gradebook = defaultdict(int)
gradebook['Alice'] += 95
print(gradebook['Alice']) # Output: 95
print(gradebook['Bob']) # Output: 0

# defaultdict for grouping operations
anagrams = defaultdict(list)
words = ["eat", "tea", "tan"]
for w in words:
key = ''.join(sorted(w))
anagrams[key].append(w)
print(anagrams['aet']) # Output: ['eat', 'tea']

# Counter - Frequency analysis in one line
from collections import Counter
text = "abracadabra"
freq = Counter(text)
print(freq['a']) # Output: 5
print(freq.most_common(2)) # Output: [('a', 5), ('b', 2)]

# Counter arithmetic for problem-solving
inventory = Counter(apples=10, oranges=5)
sales = Counter(apples=3, oranges=2)
print(inventory - sales) # Output: Counter({'apples': 7, 'oranges': 3})

# namedtuple - Self-documenting data structures
from collections import namedtuple
Employee = namedtuple('Employee', 'name role salary')
dev = Employee('Alex', 'Developer', 95000)
print(dev.role) # Output: Developer
print(dev[2]) # Output: 95000

# deque - Optimal for BFS and sliding windows
from collections import deque
queue = deque([1, 2, 3])
queue.append(4)
queue.popleft()
print(queue) # Output: deque([2, 3, 4])
queue.rotate(1)
print(queue) # Output: deque([4, 2, 3])

# OrderedDict - Track insertion order (LRU cache essential)
from collections import OrderedDict
cache = OrderedDict()
cache['A'] = 1
cache['B'] = 2
cache.move_to_end('A')
cache.popitem(last=False)
print(list(cache.keys())) # Output: ['B', 'A']

# ChainMap - Manage layered configurations
from collections import ChainMap
defaults = {'theme': 'dark', 'font': 'Arial'}
user_prefs = {'theme': 'light'}
settings = ChainMap(user_prefs, defaults)
print(settings['font']) # Output: Arial

# Practical Interview Tip: Anagram detection
print(Counter("secure") == Counter("rescue")) # Output: True

# Pro Tip: Sliding window maximum
def max_sliding_window(nums, k):
dq, result = deque(), []
for i, n in enumerate(nums):
while dq and nums[dq[-1]] < n:
dq.pop()
dq.append(i)
if dq[0] == i - k:
dq.popleft()
if i >= k - 1:
result.append(nums[dq[0]])
return result
print(max_sliding_window([1,3,-1,-3,5,3,6,7], 3)) # Output: [3,3,5,5,6,7]

# Expert Move: Custom LRU Cache implementation
class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key):
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value):
if key in self.cache:
del self.cache[key]
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
cache = LRUCache(2)
cache.put(1, 10)
cache.put(2, 20)
cache.get(1)
cache.put(3, 30)
print(list(cache.cache.keys())) # Output: [2, 1, 3] β†’ Wait! Correction: Should be [1, 3] (capacity=2 triggers eviction of '2')

# Bonus: Multiset operations with Counter
primes = Counter([2, 3, 5, 7])
odds = Counter([1, 3, 5, 7, 9])
print(primes | odds) # Output: Counter({3:1, 5:1, 7:1, 2:1, 9:1, 1:1})


By: @DatascienceN🌟

#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
❀1
# Django ORM Comparison - Know both frameworks
# Django model (contrast with SQLAlchemy)
from django.db import models

class Department(models.Model):
name = models.CharField(max_length=50)

class Employee(models.Model):
name = models.CharField(max_length=100)
email = models.EmailField(unique=True)
department = models.ForeignKey(Department, on_delete=models.CASCADE)

# Django query (similar but different syntax)
Employee.objects.filter(department__name="HR").select_related('department')


# Async ORM - Modern Python requirement
# Requires SQLAlchemy 1.4+ and asyncpg
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession

async_engine = create_async_engine(
"postgresql+asyncpg://user:pass@localhost/db",
echo=True,
)
async_session = AsyncSession(async_engine)

async with async_session.begin():
result = await async_session.execute(
select(Employee).where(Employee.name == "Alice")
)
employee = result.scalar_one()


# Testing Strategies - Interview differentiator
from unittest import mock

# Mock database for unit tests
with mock.patch('sqlalchemy.create_engine') as mock_engine:
mock_conn = mock.MagicMock()
mock_engine.return_value.connect.return_value = mock_conn

# Test your ORM-dependent code
create_employee("Test", "test@company.com")
mock_conn.execute.assert_called()


# Production Monitoring - Track slow queries
from sqlalchemy import event

@event.listens_for(engine, "before_cursor_execute")
def before_cursor(conn, cursor, statement, params, context, executemany):
conn.info.setdefault('query_start_time', []).append(time.time())

@event.listens_for(engine, "after_cursor_execute")
def after_cursor(conn, cursor, statement, params, context, executemany):
total = time.time() - conn.info['query_start_time'].pop(-1)
if total > 0.1: # Log slow queries
print(f"SLOW QUERY ({total:.2f}s): {statement}")


# Interview Power Move: Implement caching layer
from functools import lru_cache

class CachedEmployeeRepository(EmployeeRepository):
@lru_cache(maxsize=100)
def get_by_id(self, employee_id):
return super().get_by_id(employee_id)

def invalidate_cache(self, employee_id):
self.get_by_id.cache_clear()

# Reduces database hits by 70% in read-heavy applications


# Pro Tip: Schema versioning in CI/CD pipelines
# Sample .gitlab-ci.yml snippet
deploy_db:
stage: deploy
script:
- alembic upgrade head
- pytest tests/db_tests.py # Verify schema compatibility
only:
- main


# Real-World Case Study: E-commerce inventory system
class Product(Base):
__tablename__ = 'products'
id = Column(Integer, primary_key=True)
sku = Column(String(20), unique=True)
stock = Column(Integer, default=0)

# Atomic stock update (prevents race conditions)
def decrement_stock(self, quantity, session):
result = session.query(Product).filter(
Product.id == self.id,
Product.stock >= quantity
).update({"stock": Product.stock - quantity})
if not result:
raise ValueError("Insufficient stock")

# Usage during checkout
product.decrement_stock(2, session)


By: @DATASCIENCE4 πŸ”’

#Python #ORM #SQLAlchemy #Django #Database #BackendDevelopment #CodingInterview #WebDevelopment #TechJobs #SystemDesign #SoftwareEngineering #DataEngineering #CareerGrowth #APIs #Microservices #DatabaseDesign #TechTips #DeveloperTools #Programming #CareerTips
❀3
# Interview Power Move: Parallel Merging
from concurrent.futures import ThreadPoolExecutor
from PyPDF2 import PdfMerger

def parallel_merge(pdf_list, output, max_workers=4):
chunks = [pdf_list[i::max_workers] for i in range(max_workers)]
temp_files = []

def merge_chunk(chunk, idx):
temp = f"temp_{idx}.pdf"
merger = PdfMerger()
for pdf in chunk:
merger.append(pdf)
merger.write(temp)
return temp

with ThreadPoolExecutor() as executor:
temp_files = list(executor.map(merge_chunk, chunks, range(max_workers)))

# Final merge of chunks
final_merger = PdfMerger()
for temp in temp_files:
final_merger.append(temp)
final_merger.write(output)

parallel_merge(["doc1.pdf", "doc2.pdf", ...], "parallel_merge.pdf")


# Pro Tip: Validate PDFs before merging
from PyPDF2 import PdfReader

def is_valid_pdf(path):
try:
with open(path, "rb") as f:
reader = PdfReader(f)
return len(reader.pages) > 0
except:
return False

valid_pdfs = [f for f in pdf_files if is_valid_pdf(f)]
merger.append(valid_pdfs) # Only merge valid files


# Real-World Case Study: Invoice Processing Pipeline
import glob
from PyPDF2 import PdfMerger

def process_monthly_invoices():
# 1. Download invoices from SFTP
download_invoices("sftp://vendor.com/invoices/*.pdf")

# 2. Validate and sort
invoices = sorted(
[f for f in glob.glob("invoices/*.pdf") if is_valid_pdf(f)],
key=lambda x: extract_invoice_date(x)
)

# 3. Merge with cover page
merger = PdfMerger()
merger.append("cover_template.pdf")
for inv in invoices:
merger.append(inv, outline_item=get_client_name(inv))

# 4. Add metadata and encrypt
merger.add_metadata({"/InvoiceCount": str(len(invoices))})
merger.encrypt(owner_pwd="finance_team_2023")
merger.write(f"Q3_Invoices_{datetime.now().strftime('%Y%m')}.pdf")

# 5. Upload to secure storage
upload_to_s3("secure-bucket/processed/", "Q3_Invoices.pdf")

process_monthly_invoices()


By: https://t.me/DataScience4

#Python #PDFProcessing #DocumentAutomation #PyPDF2 #CodingInterview #BackendDevelopment #FileHandling #DataEngineering #TechJobs #Programming #SystemDesign #DeveloperTips #CareerGrowth #CloudComputing #Docker #Microservices #Productivity #TechTips #Python3 #SoftwareEngineering
Forwarded from Machine Learning
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβ€”master this to create viral tools and ace full-stack interviews! πŸ€–

# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters

async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)

app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()


# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes

openai.api_key = os.getenv("OPENAI_API_KEY")

async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return

prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"πŸ”₯ Error: {str(e)}")

app.add_handler(CommandHandler("generate", generate))


Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots

#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips


https://t.me/DataScienceM 🦾
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ’‘ Python Lists Cheatsheet: Essential Operations

This lesson provides a quick reference for common Python list operations. Lists are ordered, mutable collections of items, and mastering their use is fundamental for Python programming. This cheatsheet covers creation, access, modification, and utility methods.

# 1. List Creation
my_list = [1, "hello", 3.14, True]
empty_list = []
numbers = list(range(5)) # [0, 1, 2, 3, 4]

# 2. Accessing Elements (Indexing & Slicing)
first_element = my_list[0] # 1
last_element = my_list[-1] # True
sub_list = my_list[1:3] # ["hello", 3.14]
copy_all = my_list[:] # [1, "hello", 3.14, True]

# 3. Modifying Elements
my_list[1] = "world" # my_list is now [1, "world", 3.14, True]

# 4. Adding Elements
my_list.append(False) # [1, "world", 3.14, True, False]
my_list.insert(1, "new item") # [1, "new item", "world", 3.14, True, False]
another_list = [5, 6]
my_list.extend(another_list) # [1, "new item", "world", 3.14, True, False, 5, 6]

# 5. Removing Elements
removed_value = my_list.pop() # Removes and returns last item (6)
removed_at_index = my_list.pop(1) # Removes and returns "new item"
my_list.remove("world") # Removes the first occurrence of "world"
del my_list[0] # Deletes item at index 0 (1)
my_list.clear() # Removes all items, list becomes []

# Re-create for other examples
numbers = [3, 1, 4, 1, 5, 9, 2]

# 6. List Information
list_length = len(numbers) # 7
count_ones = numbers.count(1) # 2
index_of_five = numbers.index(5) # 4 (first occurrence)
is_present = 9 in numbers # True
is_not_present = 10 not in numbers # True

# 7. Sorting
numbers_sorted_asc = sorted(numbers) # Returns new list: [1, 1, 2, 3, 4, 5, 9]
numbers.sort(reverse=True) # Sorts in-place: [9, 5, 4, 3, 2, 1, 1]

# 8. Reversing
numbers.reverse() # Reverses in-place: [1, 1, 2, 3, 4, 5, 9]

# 9. Iteration
for item in numbers:
# print(item)
pass # Placeholder for loop body

# 10. List Comprehensions (Concise creation/transformation)
squares = [x**2 for x in range(5)] # [0, 1, 4, 9, 16]
even_numbers = [x for x in numbers if x % 2 == 0] # [2, 4]


Code explanation: This script demonstrates fundamental list operations in Python. It covers creating lists, accessing elements using indexing and slicing, modifying existing elements, adding new items with append(), insert(), and extend(), and removing items using pop(), remove(), del, and clear(). It also shows how to get list information like length (len()), item counts (count()), and indices (index()), check for item existence (in), sort (sort(), sorted()), reverse (reverse()), and iterate through lists. Finally, it illustrates list comprehensions for concise list generation and filtering.

#Python #Lists #DataStructures #Programming #Cheatsheet

━━━━━━━━━━━━━━━
By: @DataScience4 ✨
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
πŸ’‘ Python Tips Part 1

A collection of essential Python tricks to make your code more efficient, readable, and "Pythonic." This part covers list comprehensions, f-strings, tuple unpacking, and using enumerate.

# Create a list of squares from 0 to 9
squares = [x**2 for x in range(10)]

print(squares)
# Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

β€’ List Comprehensions: A concise and often faster way to create lists. The syntax is [expression for item in iterable].

name = "Alex"
score = 95.5

# Using an f-string for easy formatting
message = f"Congratulations {name}, you scored {score:.1f}!"

print(message)
# Output: Congratulations Alex, you scored 95.5!

β€’ F-Strings: The modern, readable way to format strings. Simply prefix the string with f and place variables or expressions directly inside curly braces {}.

numbers = (1, 2, 3, 4, 5)

# Unpack the first, last, and middle elements
first, *middle, last = numbers

print(f"First: {first}") # 1
print(f"Middle: {middle}") # [2, 3, 4]
print(f"Last: {last}") # 5

β€’ Extended Unpacking: Use the asterisk * operator to capture multiple items from an iterable into a list during assignment. It's perfect for separating the "head" and "tail" from the rest.

items = ['keyboard', 'mouse', 'monitor']

for index, item in enumerate(items):
print(f"Item #{index}: {item}")

# Output:
# Item #0: keyboard
# Item #1: mouse
# Item #2: monitor

β€’ Using enumerate: The Pythonic way to get both the index and the value of an item when looping. It's much cleaner than using range(len(items)).

#Python #Programming #CodeTips #PythonTricks

━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❀3
πŸ’‘ Python Tips Part 2

More essential Python tricks to improve your code. This part covers dictionary comprehensions, the zip function, ternary operators, and using underscores for unused variables.

# Create a dictionary of numbers and their squares
squared_dict = {x: x**2 for x in range(1, 6)}

print(squared_dict)
# Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

β€’ Dictionary Comprehensions: A concise way to create dictionaries, similar to list comprehensions. The syntax is {key_expr: value_expr for item in iterable}.

students = ["Alice", "Bob", "Charlie"]
scores = [88, 92, 79]

for student, score in zip(students, scores):
print(f"{student}: {score}")

# Output:
# Alice: 88
# Bob: 92
# Charlie: 79

β€’ Using zip: The zip function combines multiple iterables (like lists or tuples) into a single iterator of tuples. It's perfect for looping over related lists in parallel.

age = 20

# Assign a value based on a condition in one line
status = "Adult" if age >= 18 else "Minor"

print(status)
# Output: Adult

β€’ Ternary Operator: A shorthand for a simple if-else statement, useful for conditional assignments. The syntax is value_if_true if condition else value_if_false.

# Looping 3 times without needing the loop variable
for _ in range(3):
print("Hello, Python!")

# Unpacking, but only needing the last value
_, _, last_item = (10, 20, 30)
print(last_item) # 30

β€’ Using Underscore _: By convention, the underscore _ is used as a variable name when you need a placeholder but don't intend to use its value. This signals to other developers that the variable is intentionally ignored.

#Python #Programming #CodeTips #PythonTricks

━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❀1
πŸ’‘ Python Tips Part 3

Advancing your Python skills with more powerful techniques. This part covers safe dictionary access with .get(), flexible function arguments with *args and **kwargs, and context managers using the with statement.

user_data = {"name": "Alice", "age": 30}

# Safely get a key that exists
name = user_data.get("name")

# Safely get a key that doesn't exist by providing a default
city = user_data.get("city", "Not Specified")

print(f"Name: {name}, City: {city}")
# Output: Name: Alice, City: Not Specified

β€’ Dictionary .get() Method: Access dictionary keys safely. .get(key, default) returns the value for a key if it exists, otherwise it returns the default value (which is None if not specified) without raising a KeyError.

def dynamic_function(*args, **kwargs):
print("Positional args (tuple):", args)
print("Keyword args (dict):", kwargs)

dynamic_function(1, 'go', True, user="admin", status="active")
# Output:
# Positional args (tuple): (1, 'go', True)
# Keyword args (dict): {'user': 'admin', 'status': 'active'}

β€’ *args and **kwargs: Use these in function definitions to accept a variable number of arguments. *args collects positional arguments into a tuple, and **kwargs collects keyword arguments into a dictionary.

# The 'with' statement ensures the file is closed automatically
try:
with open("notes.txt", "w") as f:
f.write("Context managers are great!")
# No need to call f.close()
print("File written and closed.")
except Exception as e:
print(f"An error occurred: {e}")

β€’ The with Statement: The with statement creates a context manager, which is the standard way to handle resources like files or network connections. It guarantees that cleanup code is executed, even if errors occur inside the block.

#Python #Programming #CodeTips #PythonTricks

━━━━━━━━━━━━━━━
By: @DataScience4 ✨
πŸ’‘ Python Tips Part 4

Level up your Python code with more advanced tips. This part covers chaining comparisons, using sets for uniqueness, and powerful tools from the collections module like Counter and defaultdict.

x = 10

# Check if x is between 5 and 15 in a clean way
if 5 < x < 15:
print("x is in range.")

# Output: x is in range.

β€’ Chaining Comparisons: Python allows you to chain comparison operators for more readable and concise range checks. This is equivalent to (5 < x) and (x < 15).

numbers = [1, 2, 2, 3, 4, 4, 4, 5]

# Use a set to quickly get unique elements
unique_numbers = list(set(numbers))

print(unique_numbers)
# Output: [1, 2, 3, 4, 5]

β€’ Sets for Uniqueness: Sets are unordered collections of unique elements. Converting a list to a set and back is the fastest and most Pythonic way to remove duplicates.

from collections import Counter

words = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
word_counts = Counter(words)

print(word_counts)
# Output: Counter({'apple': 3, 'banana': 2, 'orange': 1})
print(word_counts.most_common(1))
# Output: [('apple', 3)]

β€’ collections.Counter: A specialized dictionary subclass for counting hashable objects. It simplifies frequency counting tasks and provides useful methods like .most_common().

from collections import defaultdict

data = [('fruit', 'apple'), ('fruit', 'banana'), ('veg', 'carrot')]
grouped_data = defaultdict(list)

for category, item in data:
grouped_data[category].append(item)

print(grouped_data)
# Output: defaultdict(<class 'list'>, {'fruit': ['apple', 'banana'], 'veg': ['carrot']})

β€’ collections.defaultdict: A dictionary that provides a default value for a non-existent key, avoiding KeyError. It's perfect for grouping items into lists or dictionaries without extra checks.

#Python #Programming #CodeTips #DataStructures

━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❀1