Network Analysis Resources & Updates
3.02K subscribers
778 photos
163 files
1.09K links
Are you seeking assistance or eager to collaborate?
Don't hesitate to dispatch your insights, inquiries, proposals, promotions, bulletins, announcements, and more to our channel overseer. We're all ears!

Contact: @Questioner2
Download Telegram
🎞Tutorial: Graph Neural Networks in TensorFlow: A Practical Guide

πŸ’₯Free recorded Tutorial by Sami Abu-el-Haija, Neslihan Bulut, Bryan Perozzi, and Anton Tsitsulin.

πŸ’₯Graphs are general data structures that can represent information from a variety of domains (social, biomedical, online transactions, and many more). Graph Neural Networks (GNNs) are quickly becoming the de-facto Machine Learning models for learning from Graph data and hereby infer missing information, such as, predicting labels of nodes or imputing missing edges. The main goal of this tutorial is to help practitioners and researchers to implement GNNs in a TensorFlow setting. Specifically, the tutorial will be mostly hands-on, and will walk the audience through a process of running existing GNNs on heterogeneous graph data, and a tour of how to implement new GNN models. The hands-on portion of the tutorial will be based on TF-GNN, a new framework that we open-sourced.

πŸ“½ Watch

πŸ“²Channel: @ComplexNetworkAnalysis

#video #Tutorial #GNN #code #python #TensorFlow
πŸ‘4
🎞 Tutorial: Graph Neural Networks in TensorFlow: A Practical Guide

πŸ’₯Free recorded course by Sami Abu-el-Haija, Neslihan Bulut, Bryan Perozzi, and Anton Tsitsulin

πŸ’₯Graphs are general data structures that can represent information from a variety of domains (social, biomedical, online transactions, and many more). Graph Neural Networks (GNNs) are quickly becoming the de-facto Machine Learning models for learning from Graph data and hereby infer missing information, such as, predicting labels of nodes or imputing missing edges. The main goal of this tutorial is to help practitioners and researchers to implement GNNs in a TensorFlow setting. Specifically, the tutorial will be mostly hands-on, and will walk the audience through a process of running existing GNNs on heterogeneous graph data, and a tour of how to implement new GNN models. The hands-on portion of the tutorial will be based on TF-GNN, a new framework that we open-sourced.


πŸ“½ Watch

πŸ“²Channel: @ComplexNetworkAnalysis

#video #course #Graph #GNN #code #python #tensorflow
πŸ‘4