Python | Machine Learning | Coding | R
67.4K subscribers
1.25K photos
89 videos
153 files
906 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
import pandas as pd
df1 = pd.DataFrame({'val1': [1, 2]}, index=['A', 'B'])
df2 = pd.DataFrame({'val2': [3, 4]}, index=['A', 'B'])
joined = df1.join(df2)
print(joined)

val1  val2
A 1 3
B 2 4


#59. pd.get_dummies()
Converts categorical variable into dummy/indicator variables (one-hot encoding).

import pandas as pd
s = pd.Series(list('abca'))
dummies = pd.get_dummies(s)
print(dummies)

a  b  c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0


#60. df.nlargest()
Returns the first n rows ordered by columns in descending order.

import pandas as pd
df = pd.DataFrame({'population': [100, 500, 200, 800]})
print(df.nlargest(2, 'population'))

population
3 800
1 500

---
#DataAnalysis #NumPy #Arrays

Part 6: NumPy - Array Creation & Manipulation

#61. np.array()
Creates a NumPy ndarray.

import numpy as np
arr = np.array([1, 2, 3])
print(arr)

[1 2 3]


#62. np.arange()
Returns an array with evenly spaced values within a given interval.

import numpy as np
arr = np.arange(0, 5)
print(arr)

[0 1 2 3 4]


#63. np.linspace()
Returns an array with evenly spaced numbers over a specified interval.

import numpy as np
arr = np.linspace(0, 10, 5)
print(arr)

[ 0.   2.5  5.   7.5 10. ]


#64. np.zeros()
Returns a new array of a given shape and type, filled with zeros.

import numpy as np
arr = np.zeros((2, 3))
print(arr)

[[0. 0. 0.]
[0. 0. 0.]]


#65. np.ones()
Returns a new array of a given shape and type, filled with ones.

import numpy as np
arr = np.ones((2, 3))
print(arr)

[[1. 1. 1.]
[1. 1. 1.]]


#66. np.random.rand()
Creates an array of the given shape and populates it with random samples from a uniform distribution over [0, 1).

import numpy as np
arr = np.random.rand(2, 2)
print(arr)

[[0.13949386 0.2921446 ]
[0.52273283 0.77122228]]
(Note: Output values will be random)


#67. arr.reshape()
Gives a new shape to an array without changing its data.

import numpy as np
arr = np.arange(6)
reshaped_arr = arr.reshape((2, 3))
print(reshaped_arr)

[[0 1 2]
[3 4 5]]


#68. np.concatenate()
Joins a sequence of arrays along an existing axis.

import numpy as np
a = np.array([[1, 2]])
b = np.array([[3, 4]])
print(np.concatenate((a, b), axis=0))

[[1 2]
[3 4]]


#69. np.vstack()
Stacks arrays in sequence vertically (row wise).

import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.vstack((a, b)))

[[1 2]
[3 4]]


#70. np.hstack()
Stacks arrays in sequence horizontally (column wise).

import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.hstack((a, b)))

[1 2 3 4]

---
#DataAnalysis #NumPy #Math #Statistics

Part 7: NumPy - Mathematical & Statistical Functions

#71. np.mean()
Computes the arithmetic mean along the specified axis.

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.mean(arr))

3.0


#72. np.median()
Computes the median along the specified axis.

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.median(arr))

3.0


#73. np.std()
Computes the standard deviation along the specified axis.