Python | Machine Learning | Coding | R
67.4K subscribers
1.25K photos
89 videos
153 files
906 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 1], 'B': ['a', 'b', 'a']})
print(df.drop_duplicates())

A  B
0 1 a
1 2 b


#37. df.sort_values()
Sorts by the values along either axis.

import pandas as pd
df = pd.DataFrame({'Age': [25, 22, 30]})
print(df.sort_values(by='Age'))

Age
1 22
0 25
2 30


#38. df.sort_index()
Sorts object by labels (along an axis).

import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3]}, index=[10, 5, 8])
print(df.sort_index())

A
5 2
8 3
10 1


#39. pd.cut()
Bins values into discrete intervals.

import pandas as pd
ages = pd.Series([22, 35, 58, 8, 42])
age_bins = pd.cut(ages, bins=[0, 18, 35, 60], labels=['Child', 'Adult', 'Senior'])
print(age_bins)

0     Adult
1 Adult
2 Senior
3 Child
4 Senior
dtype: category
Categories (3, object): ['Child' < 'Adult' < 'Senior']


#40. pd.qcut()
Quantile-based discretization function (bins into equal-sized groups).

import pandas as pd
data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
quartiles = pd.qcut(data, 4, labels=False)
print(quartiles)

0    0
1 0
2 0
3 1
4 1
5 2
6 2
7 3
8 3
9 3
dtype: int64


#41. s.str.contains()
Tests if a pattern or regex is contained within a string of a Series.

import pandas as pd
s = pd.Series(['apple', 'banana', 'apricot'])
print(s[s.str.contains('ap')])

0      apple
2 apricot
dtype: object


#42. s.str.split()
Splits strings around a given separator/delimiter.

import pandas as pd
s = pd.Series(['a_b', 'c_d'])
print(s.str.split('_', expand=True))

0  1
0 a b
1 c d


#43. s.str.lower()
Converts strings in the Series to lowercase.

import pandas as pd
s = pd.Series(['HELLO', 'World'])
print(s.str.lower())

0    hello
1 world
dtype: object


#44. s.str.strip()
Removes leading and trailing whitespace.

import pandas as pd
s = pd.Series([' hello ', ' world '])
print(s.str.strip())

0    hello
1 world
dtype: object


#45. s.dt.year
Extracts the year from a datetime Series.

import pandas as pd
s = pd.to_datetime(pd.Series(['2023-01-01', '2024-05-10']))
print(s.dt.year)

0    2023
1 2024
dtype: int64

---
#DataAnalysis #Pandas #Grouping #Aggregation

Part 4: Pandas - Grouping & Aggregation

#46. df.groupby()
Groups a DataFrame using a mapper or by a Series of columns.

import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
grouped = df.groupby('Team')
print(grouped)

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x...>


#47. groupby.agg()
Aggregates using one or more operations over the specified axis.

import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
agg_df = df.groupby('Team').agg(['mean', 'sum'])
print(agg_df)

Points     
mean sum
Team
A 11 22
B 7 14


#48. groupby.size()
Computes group sizes.
1