Python | Machine Learning | Coding | R
63.8K subscribers
1.14K photos
70 videos
144 files
795 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
NUMPY FOR DS.pdf
4.5 MB
Let's start at the top...

NumPy contains a broad array of functionality for fast numerical & mathematical operations in Python

The core data-structure within #NumPy is an ndArray (or n-dimensional array)

Behind the scenes - much of the NumPy functionality is written in the programming language C

NumPy functionality is used in other popular #Python packages including #Pandas, #Matplotlib, & #scikitlearn!

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
18
🚀 THE 7-DAY PROFIT CHALLENGE! 🚀

Can you turn $100 into $5,000 in just 7 days?
Jay can. And she’s challenging YOU to do the same. 👇

https://t.me/+QOcycXvRiYs4YTk1
https://t.me/+QOcycXvRiYs4YTk1
https://t.me/+QOcycXvRiYs4YTk1
4
Topic: Handling Datasets of All Types – Part 1 of 5: Introduction and Basic Concepts

---

1. What is a Dataset?

• A dataset is a structured collection of data, usually organized in rows and columns, used for analysis or training machine learning models.

---

2. Types of Datasets

Structured Data: Tables, spreadsheets with rows and columns (e.g., CSV, Excel).

Unstructured Data: Images, text, audio, video.

Semi-structured Data: JSON, XML files containing hierarchical data.

---

3. Common Dataset Formats

• CSV (Comma-Separated Values)

• Excel (.xls, .xlsx)

• JSON (JavaScript Object Notation)

• XML (eXtensible Markup Language)

• Images (JPEG, PNG, TIFF)

• Audio (WAV, MP3)

---

4. Loading Datasets in Python

• Use libraries like pandas for structured data:

import pandas as pd
df = pd.read_csv('data.csv')


• Use libraries like json for JSON files:

import json
with open('data.json') as f:
data = json.load(f)


---

5. Basic Dataset Exploration

• Check shape and size:

print(df.shape)


• Preview data:

print(df.head())


• Check for missing values:

print(df.isnull().sum())


---

6. Summary

• Understanding dataset types is crucial before processing.

• Loading and exploring datasets helps identify cleaning and preprocessing needs.

---

Exercise

• Load a CSV and JSON dataset in Python, print their shapes, and identify missing values.

---

#DataScience #Datasets #DataLoading #Python #DataExploration

The rest of the parts 👇
https://t.me/DataScienceM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
22
Topic: Python Script to Convert a Shared ChatGPT Link to PDF – Step-by-Step Guide

---

### Objective

In this lesson, we’ll build a Python script that:

• Takes a ChatGPT share link (e.g., https://chat.openai.com/share/abc123)
• Downloads the HTML content of the chat
• Converts it to a PDF file using pdfkit and wkhtmltopdf

This is useful for archiving, sharing, or printing ChatGPT conversations in a clean format.

---

### 1. Prerequisites

Before starting, you need the following libraries and tools:

#### • Install pdfkit and requests

pip install pdfkit requests


#### • Install wkhtmltopdf

Download from:
https://wkhtmltopdf.org/downloads.html

Make sure to add the path of the installed binary to your system PATH.

---

### 2. Python Script: Convert Shared ChatGPT URL to PDF

import pdfkit
import requests
import os

# Define output filename
output_file = "chatgpt_conversation.pdf"

# ChatGPT shared URL (user input)
chat_url = input("Enter the ChatGPT share URL: ").strip()

# Verify the URL format
if not chat_url.startswith("https://chat.openai.com/share/"):
print("Invalid URL. Must start with https://chat.openai.com/share/")
exit()

try:
# Download HTML content
response = requests.get(chat_url)
if response.status_code != 200:
raise Exception(f"Failed to load the chat: {response.status_code}")

html_content = response.text

# Save HTML to temporary file
with open("temp_chat.html", "w", encoding="utf-8") as f:
f.write(html_content)

# Convert HTML to PDF
pdfkit.from_file("temp_chat.html", output_file)

print(f"\n PDF saved as: {output_file}")

# Optional: remove temp file
os.remove("temp_chat.html")

except Exception as e:
print(f" Error: {e}")


---

### 3. Notes

• This approach works only if the shared page is publicly accessible (which ChatGPT share links are).
• The PDF output will contain the web page version, including theme and layout.
• You can customize the PDF output using pdfkit options (like page size, margins, etc.).

---

### 4. Optional Enhancements

• Add GUI with Tkinter
• Accept multiple URLs
• Add PDF metadata (title, author, etc.)
• Add support for offline rendering using BeautifulSoup to clean content

---

### Exercise

• Try converting multiple ChatGPT share links to PDF
• Customize the styling with your own CSS
• Add a timestamp or watermark to the PDF

---

#Python #ChatGPT #PDF #WebScraping #Automation #pdfkit #tkinter

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
24💯1
🙏💸 500$ FOR THE FIRST 500 WHO JOIN THE CHANNEL! 🙏💸

Join our channel today for free! Tomorrow it will cost 500$!

https://t.me/+QHlfCJcO2lRjZWVl

You can join at this link! 👆👇

https://t.me/+QHlfCJcO2lRjZWVl
5👍1
Python | Machine Learning | Coding | R
Photo
# 📚 Python Tutorial: Convert EPUB to PDF (Preserving Images)
#Python #EPUB #PDF #EbookConversion #Automation

This comprehensive guide will show you how to convert EPUB files (including those with images) to high-quality PDFs using Python.

---

## 🔹 Required Tools & Libraries
We'll use these Python packages:
- ebooklib - For EPUB parsing
- pdfkit (wrapper for wkhtmltopdf) - For PDF generation
- Pillow - For image handling (optional)

pip install ebooklib pdfkit pillow


Also install system dependencies:
# On Ubuntu/Debian
sudo apt-get install wkhtmltopdf

# On MacOS
brew install wkhtmltopdf

# On Windows (download from wkhtmltopdf.org)


---

## 🔹 Step 1: Extract EPUB Contents
First, we'll unpack the EPUB file to access its HTML and images.

from ebooklib import epub
from bs4 import BeautifulSoup
import os

def extract_epub(epub_path, output_dir):
book = epub.read_epub(epub_path)

# Create output directory
os.makedirs(output_dir, exist_ok=True)

# Extract all items (chapters, images, styles)
for item in book.get_items():
if item.get_type() == epub.ITEM_IMAGE:
# Save images
with open(os.path.join(output_dir, item.get_name()), 'wb') as f:
f.write(item.get_content())
elif item.get_type() == epub.ITEM_DOCUMENT:
# Save HTML chapters
with open(os.path.join(output_dir, item.get_name()), 'wb') as f:
f.write(item.get_content())

return [item.get_name() for item in book.get_items() if item.get_type() == epub.ITEM_DOCUMENT]


---

## 🔹 Step 2: Convert HTML to PDF
Now we'll convert the extracted HTML files to PDF while preserving images.

import pdfkit
from PIL import Image # For image validation (optional)

def html_to_pdf(html_files, output_pdf, base_dir):
options = {
'encoding': "UTF-8",
'quiet': '',
'enable-local-file-access': '', # Critical for local images
'no-outline': None,
'margin-top': '15mm',
'margin-right': '15mm',
'margin-bottom': '15mm',
'margin-left': '15mm',
}

# Validate images (optional)
for html_file in html_files:
soup = BeautifulSoup(open(os.path.join(base_dir, html_file)), 'html.parser')
for img in soup.find_all('img'):
img_path = os.path.join(base_dir, img['src'])
try:
Image.open(img_path) # Validate image
except Exception as e:
print(f"Image error in {html_file}: {e}")
img.decompose() # Remove broken images

# Convert to PDF
pdfkit.from_file(
[os.path.join(base_dir, f) for f in html_files],
output_pdf,
options=options
)


---

## 🔹 Step 3: Complete Conversion Function
Combine everything into a single workflow.

def epub_to_pdf(epub_path, output_pdf, temp_dir="temp_epub"):
try:
print(f"Converting {epub_path} to PDF...")

# Step 1: Extract EPUB
print("Extracting EPUB contents...")
html_files = extract_epub(epub_path, temp_dir)

# Step 2: Convert to PDF
print("Generating PDF...")
html_to_pdf(html_files, output_pdf, temp_dir)

print(f"Success! PDF saved to {output_pdf}")
return True

except Exception as e:
print(f"Conversion failed: {str(e)}")
return False
finally:
# Clean up temporary files
if os.path.exists(temp_dir):
import shutil
shutil.rmtree(temp_dir)


---

## 🔹 Advanced Options
### 1. Custom Styling
Add CSS to improve PDF appearance:

def html_to_pdf(html_files, output_pdf, base_dir):
options = {
# ... previous options ...
'user-style-sheet': 'styles.css', # Custom CSS
}

# Create CSS file if needed
css = """
body { font-family: "Times New Roman", serif; font-size: 12pt; }
img { max-width: 100%; height: auto; }
"""
with open(os.path.join(base_dir, 'styles.css'), 'w') as f:
f.write(css)

pdfkit.from_file(/* ... */)
4🔥2🎉1
Python | Machine Learning | Coding | R
Photo
### 2. Handling Complex EPUBs
For problematic EPUBs, try this pre-processing:

def clean_html(html_file):
with open(html_file, 'r+', encoding='utf-8') as f:
content = f.read()
soup = BeautifulSoup(content, 'html.parser')

# Remove problematic elements
for element in soup(['script', 'iframe', 'object']):
element.decompose()

# Fix image paths
for img in soup.find_all('img'):
if not os.path.isabs(img['src']):
img['src'] = os.path.abspath(os.path.join(os.path.dirname(html_file), img['src']))

# Write back cleaned HTML
f.seek(0)
f.write(str(soup))
f.truncate()


---

## 🔹 Full Usage Example
if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser(description='Convert EPUB to PDF')
parser.add_argument('epub_file', help='Input EPUB file path')
parser.add_argument('pdf_file', help='Output PDF file path')
args = parser.parse_args()

success = epub_to_pdf(args.epub_file, args.pdf_file)
if not success:
exit(1)


Run from command line:
python epub_to_pdf.py input.epub output.pdf


---

## 🔹 Troubleshooting Common Issues
| Problem | Solution |
|---------|----------|
| Missing images | Ensure enable-local-file-access is set |
| Broken CSS paths | Use absolute paths in CSS references |
| Encoding issues | Specify UTF-8 in both HTML and pdfkit options |
| Large file sizes | Optimize images before conversion |
| Layout problems | Add CSS media queries for print |

---

## 🔹 Alternative Libraries
If pdfkit doesn't meet your needs:

1. WeasyPrint (pure Python)

   pip install weasyprint


2. PyMuPDF (fitz)

   pip install pymupdf


3. Calibre's ebook-convert CLI

   ebook-convert input.epub output.pdf


---

## 🔹 Best Practices
1. Always clean temporary files after conversion
2. Validate input EPUBs before processing
3. Handle metadata (title, author, etc.)
4. Batch process multiple files with threading
5. Log conversion results for debugging

---

### 📚 Final Notes
This solution preserves:
✔️ All images in original quality
✔️ Chapter structure and formatting
✔️ Text encoding and special characters

For production use, consider adding:
- Progress tracking
- Parallel conversion of chapters
- EPUB metadata preservation
- Custom cover page support

#PythonAutomation #EbookTools #PDFConversion 🚀

Try enhancing this script by:
1. Adding a progress bar
2. Preserving table of contents
3. Supporting custom cover pages
4. Creating a GUI version

https://t.me/CodeProgrammer ❤️
14
This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

https://t.me/addlist/8_rRW2scgfRhOTc0

https://t.me/Codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
3💯2
📚 JaidedAI/EasyOCR — an open-source Python library for Optical Character Recognition (OCR) that's easy to use and supports over 80 languages out of the box.

### 🔍 Key Features:

🔸 Extracts text from images and scanned documents — including handwritten notes and unusual fonts
🔸 Supports a wide range of languages like English, Russian, Chinese, Arabic, and more
🔸 Built on PyTorch — uses modern deep learning models (not the old-school Tesseract)
🔸 Simple to integrate into your Python projects

### Example Usage:

import easyocr

reader = easyocr.Reader(['en', 'ru']) # Choose supported languages
result = reader.readtext('image.png')


### 📌 Ideal For:

Text extraction from photos, scans, and documents
Embedding OCR capabilities in apps (e.g. automated data entry)

🔗 GitHub: https://github.com/JaidedAI/EasyOCR

👉 Follow us for more: @DataScienceN

#Python #OCR #MachineLearning #ComputerVision #EasyOCR
3👎1🎉1
Transformer Lesson - Part 1/7: Introduction and Architecture

Let's start:
https://hackmd.io/@husseinsheikho/transformers

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
6👍2
🔥 Master Vision Transformers with 65+ MCQs! 🔥

Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?

🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT — all with answers!

🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq

🔹 Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations

#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
3
This media is not supported in your browser
VIEW IN TELEGRAM
🧹 ObjectClear — an AI-powered tool for removing objects from images effortlessly.

⚙️ What It Can Do:

🖼️ Upload any image
🎯 Select the object you want to remove
🌟 The model automatically erases the object and intelligently reconstructs the background

⚡️ Under the Hood:

— Uses Segment Anything (SAM) by Meta for object segmentation
— Leverages Inpaint-Anything for realistic background generation
— Works in your browser with an intuitive Gradio UI

✔️ Fully open-source and can be run locally.

📎 GitHub: https://github.com/zjx0101/ObjectClear

#AI #ImageEditing #ComputerVision #Gradio #OpenSource #Python


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
2
A real channel to get a job opportunity in the field of programming (India, Russia, Arabs)
1
This media is not supported in your browser
VIEW IN TELEGRAM
I recommend you to join @TradingNewsIO for Global & Economic News 24/7
⚡️Stay up-to-date with real-time updates on global events.
➡️ Click Here and JOIN NOW !

#إعلان InsideAds - ترويج
1
CRMchat.ai transforms your regular channel into a powerful sales funnel. Don't waste time on routine tasks – the bot will find and nurture leads right in the chat!
See how easy it is to automate sales and get your first leads today.

#إعلان InsideAds - ترويج
Stop wasting time scrolling. Start making money. 💰
With @TaniaTradingAcademy you just copy, paste… and cash out.
No stress. No complicated strategies. Just pure profits.
💥 Anyone can do it. The earlier you join, the faster you win.
🟣 Join the winning side 👉 @TaniaTradingAcademy


#إعلان InsideAds - ترويج
1