import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B', 'A']})
print(df.groupby('Team').size())
Team
A 3
B 2
dtype: int64
#49.
groupby.count()Computes the count of non-NA cells for each group.
import pandas as pd
import numpy as np
df = pd.DataFrame({'Team': ['A', 'B', 'A'], 'Score': [1, np.nan, 3]})
print(df.groupby('Team').count())
Score
Team
A 2
B 0
#50.
groupby.mean()Computes the mean of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').mean())
Points
Team
A 11
B 7
#51.
groupby.sum()Computes the sum of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').sum())
Points
Team
A 22
B 14
#52.
groupby.min()Computes the minimum of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').min())
Points
Team
A 10
B 6
#53.
groupby.max()Computes the maximum of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').max())
Points
Team
A 12
B 8
#54.
df.pivot_table()Creates a spreadsheet-style pivot table as a DataFrame.
import pandas as pd
df = pd.DataFrame({'A': ['foo', 'foo', 'bar'], 'B': ['one', 'two', 'one'], 'C': [1, 2, 3]})
pivot = df.pivot_table(values='C', index='A', columns='B')
print(pivot)
B one two
A
bar 3.0 NaN
foo 1.0 2.0
#55.
pd.crosstab()Computes a cross-tabulation of two (or more) factors.
import pandas as pd
df = pd.DataFrame({'A': ['foo', 'foo', 'bar'], 'B': ['one', 'two', 'one']})
crosstab = pd.crosstab(df.A, df.B)
print(crosstab)
B one two
A
bar 1 0
foo 1 1
---
#DataAnalysis #Pandas #Merging #Joining
Part 5: Pandas - Merging & Concatenating
#56.
pd.merge()Merges DataFrame or named Series objects with a database-style join.
import pandas as pd
df1 = pd.DataFrame({'key': ['A', 'B'], 'val1': [1, 2]})
df2 = pd.DataFrame({'key': ['A', 'B'], 'val2': [3, 4]})
merged = pd.merge(df1, df2, on='key')
print(merged)
key val1 val2
0 A 1 3
1 B 2 4
#57.
pd.concat()Concatenates pandas objects along a particular axis.
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2]})
df2 = pd.DataFrame({'A': [3, 4]})
concatenated = pd.concat([df1, df2])
print(concatenated)
A
0 1
1 2
0 3
1 4
#58.
df.join()Joins columns with other DataFrame(s) on index or on a key column.
❤1
import pandas as pd
df1 = pd.DataFrame({'val1': [1, 2]}, index=['A', 'B'])
df2 = pd.DataFrame({'val2': [3, 4]}, index=['A', 'B'])
joined = df1.join(df2)
print(joined)
val1 val2
A 1 3
B 2 4
#59.
pd.get_dummies()Converts categorical variable into dummy/indicator variables (one-hot encoding).
import pandas as pd
s = pd.Series(list('abca'))
dummies = pd.get_dummies(s)
print(dummies)
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
#60.
df.nlargest()Returns the first n rows ordered by columns in descending order.
import pandas as pd
df = pd.DataFrame({'population': [100, 500, 200, 800]})
print(df.nlargest(2, 'population'))
population
3 800
1 500
---
#DataAnalysis #NumPy #Arrays
Part 6: NumPy - Array Creation & Manipulation
#61.
np.array()Creates a NumPy ndarray.
import numpy as np
arr = np.array([1, 2, 3])
print(arr)
[1 2 3]
#62.
np.arange()Returns an array with evenly spaced values within a given interval.
import numpy as np
arr = np.arange(0, 5)
print(arr)
[0 1 2 3 4]
#63.
np.linspace()Returns an array with evenly spaced numbers over a specified interval.
import numpy as np
arr = np.linspace(0, 10, 5)
print(arr)
[ 0. 2.5 5. 7.5 10. ]
#64.
np.zeros()Returns a new array of a given shape and type, filled with zeros.
import numpy as np
arr = np.zeros((2, 3))
print(arr)
[[0. 0. 0.]
[0. 0. 0.]]
#65.
np.ones()Returns a new array of a given shape and type, filled with ones.
import numpy as np
arr = np.ones((2, 3))
print(arr)
[[1. 1. 1.]
[1. 1. 1.]]
#66.
np.random.rand()Creates an array of the given shape and populates it with random samples from a uniform distribution over [0, 1).
import numpy as np
arr = np.random.rand(2, 2)
print(arr)
[[0.13949386 0.2921446 ]
[0.52273283 0.77122228]]
(Note: Output values will be random)
#67.
arr.reshape()Gives a new shape to an array without changing its data.
import numpy as np
arr = np.arange(6)
reshaped_arr = arr.reshape((2, 3))
print(reshaped_arr)
[[0 1 2]
[3 4 5]]
#68.
np.concatenate()Joins a sequence of arrays along an existing axis.
import numpy as np
a = np.array([[1, 2]])
b = np.array([[3, 4]])
print(np.concatenate((a, b), axis=0))
[[1 2]
[3 4]]
#69.
np.vstack()Stacks arrays in sequence vertically (row wise).
import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.vstack((a, b)))
[[1 2]
[3 4]]
#70.
np.hstack()Stacks arrays in sequence horizontally (column wise).
import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.hstack((a, b)))
[1 2 3 4]
---
#DataAnalysis #NumPy #Math #Statistics
Part 7: NumPy - Mathematical & Statistical Functions
#71.
np.mean()Computes the arithmetic mean along the specified axis.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.mean(arr))
3.0
#72.
np.median()Computes the median along the specified axis.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.median(arr))
3.0
#73.
np.std()Computes the standard deviation along the specified axis.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.std(arr))
1.4142135623730951
#74.
np.sum()Sums array elements over a given axis.
import numpy as np
arr = np.array([[1, 2], [3, 4]])
print(np.sum(arr))
10
#75.
np.min()Returns the minimum of an array or minimum along an axis.
import numpy as np
arr = np.array([5, 2, 8, 1])
print(np.min(arr))
1
#76.
np.max()Returns the maximum of an array or maximum along an axis.
import numpy as np
arr = np.array([5, 2, 8, 1])
print(np.max(arr))
8
#77.
np.sqrt()Returns the non-negative square-root of an array, element-wise.
import numpy as np
arr = np.array([4, 9, 16])
print(np.sqrt(arr))
[2. 3. 4.]
#78.
np.log()Calculates the natural logarithm, element-wise.
import numpy as np
arr = np.array([1, np.e, np.e**2])
print(np.log(arr))
[0. 1. 2.]
#79.
np.dot()Calculates the dot product of two arrays.
import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.dot(a, b))
11
#80.
np.where()Returns elements chosen from x or y depending on a condition.
import numpy as np
arr = np.array([10, 5, 20, 15])
print(np.where(arr > 12, 'High', 'Low'))
['Low' 'Low' 'High' 'High']
---
#DataAnalysis #Matplotlib #Seaborn #Visualization
Part 8: Matplotlib & Seaborn - Data Visualization
#81.
plt.plot()Plots y versus x as lines and/or markers.
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
# In a real script, you would call plt.show()
print("Output: A figure window opens displaying a line plot.")
Output: A figure window opens displaying a line plot.
#82.
plt.scatter()A scatter plot of y vs. x with varying marker size and/or color.
import matplotlib.pyplot as plt
plt.scatter([1, 2, 3, 4], [1, 4, 9, 16])
print("Output: A figure window opens displaying a scatter plot.")
Output: A figure window opens displaying a scatter plot.
#83.
plt.hist()Computes and draws the histogram of x.
import matplotlib.pyplot as plt
import numpy as np
data = np.random.randn(1000)
plt.hist(data, bins=30)
print("Output: A figure window opens displaying a histogram.")
Output: A figure window opens displaying a histogram.
#84.
plt.bar()Makes a bar plot.
import matplotlib.pyplot as plt
plt.bar(['A', 'B', 'C'], [10, 15, 7])
print("Output: A figure window opens displaying a bar chart.")
Output: A figure window opens displaying a bar chart.
#85.
plt.boxplot()Makes a box and whisker plot.
import matplotlib.pyplot as plt
import numpy as np
data = [np.random.normal(0, std, 100) for std in range(1, 4)]
plt.boxplot(data)
print("Output: A figure window opens displaying a box plot.")
Output: A figure window opens displaying a box plot.
#86.
sns.heatmap()Plots rectangular data as a color-encoded matrix.
import seaborn as sns
import numpy as np
data = np.random.rand(10, 12)
sns.heatmap(data)
print("Output: A figure window opens displaying a heatmap.")
Output: A figure window opens displaying a heatmap.
#87.
sns.pairplot()Plots pairwise relationships in a dataset.
❤2
import seaborn as sns
import pandas as pd
df = pd.DataFrame(np.random.randn(100, 4), columns=['A', 'B', 'C', 'D'])
# sns.pairplot(df) # This line would generate the plot
print("Output: A figure grid opens showing scatterplots for each pair of variables.")
Output: A figure grid opens showing scatterplots for each pair of variables.
#88.
sns.countplot()Shows the counts of observations in each categorical bin using bars.
import seaborn as sns
import pandas as pd
df = pd.DataFrame({'category': ['A', 'B', 'A', 'C', 'A', 'B']})
sns.countplot(x='category', data=df)
print("Output: A figure window opens showing a count plot.")
Output: A figure window opens showing a count plot.
#89.
sns.jointplot()Draws a plot of two variables with bivariate and univariate graphs.
import seaborn as sns
import pandas as pd
df = pd.DataFrame({'x': range(50), 'y': range(50) + np.random.randn(50)})
# sns.jointplot(x='x', y='y', data=df) # This line would generate the plot
print("Output: A figure shows a scatter plot with histograms for each axis.")
Output: A figure shows a scatter plot with histograms for each axis.
#90.
plt.show()Displays all open figures.
import matplotlib.pyplot as plt
plt.plot([1, 2, 3])
# plt.show() # In a script, this is essential to see the plot.
print("Executes the command to render and display the plot.")
Executes the command to render and display the plot.
---
#DataAnalysis #ScikitLearn #Modeling #Preprocessing
Part 9: Scikit-learn - Modeling & Preprocessing
#91.
train_test_split()Splits arrays or matrices into random train and test subsets.
from sklearn.model_selection import train_test_split
import numpy as np
X, y = np.arange(10).reshape((5, 2)), range(5)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
print(f"X_train shape: {X_train.shape}")
print(f"X_test shape: {X_test.shape}")
X_train shape: (3, 2)
X_test shape: (2, 2)
#92.
StandardScaler()Standardizes features by removing the mean and scaling to unit variance.
from sklearn.preprocessing import StandardScaler
data = [[0, 0], [0, 0], [1, 1], [1, 1]]
scaler = StandardScaler()
print(scaler.fit_transform(data))
[[-1. -1.]
[-1. -1.]
[ 1. 1.]
[ 1. 1.]]
#93.
MinMaxScaler()Transforms features by scaling each feature to a given range, typically [0, 1].
from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler()
print(scaler.fit_transform(data))
[[0. 0. ]
[0.25 0.25]
[0.5 0.5 ]
[1. 1. ]]
#94.
LabelEncoder()Encodes target labels with values between 0 and n_classes-1.
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
encoded = le.fit_transform(['paris', 'tokyo', 'paris'])
print(encoded)
[0 1 0]
#95.
OneHotEncoder()Encodes categorical features as a one-hot numeric array.
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
X = [['Male'], ['Female'], ['Female']]
print(enc.fit_transform(X).toarray())
[[0. 1.]
[1. 0.]
[1. 0.]]
#96.
LinearRegression()Ordinary least squares Linear Regression model.
from sklearn.linear_model import LinearRegression
X = [[0], [1], [2]]
y = [0, 1, 2]
reg = LinearRegression().fit(X, y)
print(f"Coefficient: {reg.coef_[0]}")
❤2
Coefficient: 1.0
#97.
LogisticRegression()Implements Logistic Regression for classification.
from sklearn.linear_model import LogisticRegression
X = [[-1], [0], [1], [2]]
y = [0, 0, 1, 1]
clf = LogisticRegression().fit(X, y)
print(f"Prediction for [[-2]]: {clf.predict([[-2]])}")
Prediction for [[-2]]: [0]
#98.
KMeans()K-Means clustering algorithm.
from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
kmeans = KMeans(n_clusters=2, n_init='auto').fit(X)
print(kmeans.labels_)
[0 0 0 1 1 1]
(Note: Cluster labels may be flipped, e.g., [1 1 1 0 0 0])
#99.
accuracy_score()Calculates the accuracy classification score.
from sklearn.metrics import accuracy_score
y_true = [0, 1, 1, 0]
y_pred = [0, 1, 0, 0]
print(accuracy_score(y_true, y_pred))
0.75
#100.
confusion_matrix()Computes a confusion matrix to evaluate the accuracy of a classification.
from sklearn.metrics import confusion_matrix
y_true = [0, 1, 0, 1]
y_pred = [1, 1, 0, 1]
print(confusion_matrix(y_true, y_pred))
[[1 1]
[0 2]]
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
❤6🆒4👍2
Unlock premium learning without spending a dime! ⭐️ @DataScienceC is the first Telegram channel dishing out free Udemy coupons daily—grab courses on data science, coding, AI, and beyond. Join the revolution and boost your skills for free today! 📕
What topic are you itching to learn next?😊
https://t.me/DataScienceC🌟
What topic are you itching to learn next?
https://t.me/DataScienceC
Please open Telegram to view this post
VIEW IN TELEGRAM
Telegram
Udemy Coupons
ads: @HusseinSheikho
The first channel in Telegram that offers free
Udemy coupons
The first channel in Telegram that offers free
Udemy coupons
❤2
Please open Telegram to view this post
VIEW IN TELEGRAM
💡 Top 50 Pillow Operations for Image Processing
I. File & Basic Operations
• Open an image file.
• Save an image.
• Display an image (opens in default viewer).
• Create a new blank image.
• Get image format (e.g., 'JPEG').
• Get image dimensions as a (width, height) tuple.
• Get pixel format (e.g., 'RGB', 'L' for grayscale).
• Convert image mode.
• Get a pixel's color value at (x, y).
• Set a pixel's color value at (x, y).
II. Cropping, Resizing & Pasting
• Crop a rectangular region.
• Resize an image to an exact size.
• Create a thumbnail (maintains aspect ratio).
• Paste one image onto another.
III. Rotation & Transformation
• Rotate an image (counter-clockwise).
• Flip an image horizontally.
• Flip an image vertically.
• Rotate by 90, 180, or 270 degrees.
• Apply an affine transformation.
IV. ImageOps Module Helpers
• Invert image colors.
• Flip an image horizontally (mirror).
• Flip an image vertically.
• Convert to grayscale.
• Colorize a grayscale image.
• Reduce the number of bits for each color channel.
• Auto-adjust image contrast.
• Equalize the image histogram.
• Add a border to an image.
V. Color & Pixel Operations
• Split image into individual bands (e.g., R, G, B).
• Merge bands back into an image.
• Apply a function to each pixel.
• Get a list of colors used in the image.
• Blend two images with alpha compositing.
VI. Filters (ImageFilter)
I. File & Basic Operations
• Open an image file.
from PIL import Image
img = Image.open("image.jpg")
• Save an image.
img.save("new_image.png")• Display an image (opens in default viewer).
img.show()
• Create a new blank image.
new_img = Image.new("RGB", (200, 100), "blue")• Get image format (e.g., 'JPEG').
print(img.format)
• Get image dimensions as a (width, height) tuple.
width, height = img.size
• Get pixel format (e.g., 'RGB', 'L' for grayscale).
print(img.mode)
• Convert image mode.
grayscale_img = img.convert("L")• Get a pixel's color value at (x, y).
r, g, b = img.getpixel((10, 20))
• Set a pixel's color value at (x, y).
img.putpixel((10, 20), (255, 0, 0))
II. Cropping, Resizing & Pasting
• Crop a rectangular region.
box = (100, 100, 400, 400)
cropped_img = img.crop(box)
• Resize an image to an exact size.
resized_img = img.resize((200, 200))
• Create a thumbnail (maintains aspect ratio).
img.thumbnail((128, 128))
• Paste one image onto another.
img.paste(another_img, (50, 50))
III. Rotation & Transformation
• Rotate an image (counter-clockwise).
rotated_img = img.rotate(45, expand=True)
• Flip an image horizontally.
flipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
• Flip an image vertically.
flipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
• Rotate by 90, 180, or 270 degrees.
img_90 = img.transpose(Image.ROTATE_90)
• Apply an affine transformation.
transformed = img.transform(img.size, Image.AFFINE, (1, 0.5, 0, 0, 1, 0))
IV. ImageOps Module Helpers
• Invert image colors.
from PIL import ImageOps
inverted_img = ImageOps.invert(img)
• Flip an image horizontally (mirror).
mirrored_img = ImageOps.mirror(img)
• Flip an image vertically.
flipped_v_img = ImageOps.flip(img)
• Convert to grayscale.
grayscale = ImageOps.grayscale(img)
• Colorize a grayscale image.
colorized = ImageOps.colorize(grayscale, black="blue", white="yellow")
• Reduce the number of bits for each color channel.
posterized = ImageOps.posterize(img, 4)
• Auto-adjust image contrast.
adjusted_img = ImageOps.autocontrast(img)
• Equalize the image histogram.
equalized_img = ImageOps.equalize(img)
• Add a border to an image.
bordered = ImageOps.expand(img, border=10, fill='black')
V. Color & Pixel Operations
• Split image into individual bands (e.g., R, G, B).
r, g, b = img.split()
• Merge bands back into an image.
merged_img = Image.merge("RGB", (r, g, b))• Apply a function to each pixel.
brighter_img = img.point(lambda i: i * 1.2)
• Get a list of colors used in the image.
colors = img.getcolors(maxcolors=256)
• Blend two images with alpha compositing.
# Both images must be in RGBA mode
blended = Image.alpha_composite(img1_rgba, img2_rgba)
VI. Filters (ImageFilter)
❤2
• Apply a simple blur filter.
• Apply a box blur with a given radius.
• Apply a Gaussian blur.
• Sharpen the image.
• Find edges.
• Enhance edges.
• Emboss the image.
• Find contours.
VII. Image Enhancement (ImageEnhance)
• Adjust color saturation.
• Adjust brightness.
• Adjust contrast.
• Adjust sharpness.
VIII. Drawing (ImageDraw & ImageFont)
• Draw text on an image.
• Draw a line.
• Draw a rectangle (outline).
• Draw a filled ellipse.
• Draw a polygon.
#Python #Pillow #ImageProcessing #PIL #CheatSheet
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
from PIL import ImageFilter
blurred_img = img.filter(ImageFilter.BLUR)
• Apply a box blur with a given radius.
box_blur = img.filter(ImageFilter.BoxBlur(5))
• Apply a Gaussian blur.
gaussian_blur = img.filter(ImageFilter.GaussianBlur(radius=2))
• Sharpen the image.
sharpened = img.filter(ImageFilter.SHARPEN)
• Find edges.
edges = img.filter(ImageFilter.FIND_EDGES)
• Enhance edges.
edge_enhanced = img.filter(ImageFilter.EDGE_ENHANCE)
• Emboss the image.
embossed = img.filter(ImageFilter.EMBOSS)
• Find contours.
contours = img.filter(ImageFilter.CONTOUR)
VII. Image Enhancement (ImageEnhance)
• Adjust color saturation.
from PIL import ImageEnhance
enhancer = ImageEnhance.Color(img)
vibrant_img = enhancer.enhance(2.0)
• Adjust brightness.
enhancer = ImageEnhance.Brightness(img)
bright_img = enhancer.enhance(1.5)
• Adjust contrast.
enhancer = ImageEnhance.Contrast(img)
contrast_img = enhancer.enhance(1.5)
• Adjust sharpness.
enhancer = ImageEnhance.Sharpness(img)
sharp_img = enhancer.enhance(2.0)
VIII. Drawing (ImageDraw & ImageFont)
• Draw text on an image.
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("arial.ttf", 36)
draw.text((10, 10), "Hello", font=font, fill="red")
• Draw a line.
draw.line((0, 0, 100, 200), fill="blue", width=3)
• Draw a rectangle (outline).
draw.rectangle([10, 10, 90, 60], outline="green", width=2)
• Draw a filled ellipse.
draw.ellipse([100, 100, 180, 150], fill="yellow")
• Draw a polygon.
draw.polygon([(10,10), (20,50), (60,10)], fill="purple")
#Python #Pillow #ImageProcessing #PIL #CheatSheet
━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
❤5🔥4👍2🎉2