import pandas as pd
df = pd.DataFrame({'A': [1, 2, 1], 'B': ['a', 'b', 'a']})
print(df.drop_duplicates())
A B
0 1 a
1 2 b
#37.
df.sort_values()Sorts by the values along either axis.
import pandas as pd
df = pd.DataFrame({'Age': [25, 22, 30]})
print(df.sort_values(by='Age'))
Age
1 22
0 25
2 30
#38.
df.sort_index()Sorts object by labels (along an axis).
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3]}, index=[10, 5, 8])
print(df.sort_index())
A
5 2
8 3
10 1
#39.
pd.cut()Bins values into discrete intervals.
import pandas as pd
ages = pd.Series([22, 35, 58, 8, 42])
age_bins = pd.cut(ages, bins=[0, 18, 35, 60], labels=['Child', 'Adult', 'Senior'])
print(age_bins)
0 Adult
1 Adult
2 Senior
3 Child
4 Senior
dtype: category
Categories (3, object): ['Child' < 'Adult' < 'Senior']
#40.
pd.qcut()Quantile-based discretization function (bins into equal-sized groups).
import pandas as pd
data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
quartiles = pd.qcut(data, 4, labels=False)
print(quartiles)
0 0
1 0
2 0
3 1
4 1
5 2
6 2
7 3
8 3
9 3
dtype: int64
#41.
s.str.contains()Tests if a pattern or regex is contained within a string of a Series.
import pandas as pd
s = pd.Series(['apple', 'banana', 'apricot'])
print(s[s.str.contains('ap')])
0 apple
2 apricot
dtype: object
#42.
s.str.split()Splits strings around a given separator/delimiter.
import pandas as pd
s = pd.Series(['a_b', 'c_d'])
print(s.str.split('_', expand=True))
0 1
0 a b
1 c d
#43.
s.str.lower()Converts strings in the Series to lowercase.
import pandas as pd
s = pd.Series(['HELLO', 'World'])
print(s.str.lower())
0 hello
1 world
dtype: object
#44.
s.str.strip()Removes leading and trailing whitespace.
import pandas as pd
s = pd.Series([' hello ', ' world '])
print(s.str.strip())
0 hello
1 world
dtype: object
#45.
s.dt.yearExtracts the year from a datetime Series.
import pandas as pd
s = pd.to_datetime(pd.Series(['2023-01-01', '2024-05-10']))
print(s.dt.year)
0 2023
1 2024
dtype: int64
---
#DataAnalysis #Pandas #Grouping #Aggregation
Part 4: Pandas - Grouping & Aggregation
#46.
df.groupby()Groups a DataFrame using a mapper or by a Series of columns.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
grouped = df.groupby('Team')
print(grouped)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x...>
#47.
groupby.agg()Aggregates using one or more operations over the specified axis.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
agg_df = df.groupby('Team').agg(['mean', 'sum'])
print(agg_df)
Points
mean sum
Team
A 11 22
B 7 14
#48.
groupby.size()Computes group sizes.
❤1
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B', 'A']})
print(df.groupby('Team').size())
Team
A 3
B 2
dtype: int64
#49.
groupby.count()Computes the count of non-NA cells for each group.
import pandas as pd
import numpy as np
df = pd.DataFrame({'Team': ['A', 'B', 'A'], 'Score': [1, np.nan, 3]})
print(df.groupby('Team').count())
Score
Team
A 2
B 0
#50.
groupby.mean()Computes the mean of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').mean())
Points
Team
A 11
B 7
#51.
groupby.sum()Computes the sum of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').sum())
Points
Team
A 22
B 14
#52.
groupby.min()Computes the minimum of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').min())
Points
Team
A 10
B 6
#53.
groupby.max()Computes the maximum of group values.
import pandas as pd
df = pd.DataFrame({'Team': ['A', 'B', 'A', 'B'], 'Points': [10, 8, 12, 6]})
print(df.groupby('Team').max())
Points
Team
A 12
B 8
#54.
df.pivot_table()Creates a spreadsheet-style pivot table as a DataFrame.
import pandas as pd
df = pd.DataFrame({'A': ['foo', 'foo', 'bar'], 'B': ['one', 'two', 'one'], 'C': [1, 2, 3]})
pivot = df.pivot_table(values='C', index='A', columns='B')
print(pivot)
B one two
A
bar 3.0 NaN
foo 1.0 2.0
#55.
pd.crosstab()Computes a cross-tabulation of two (or more) factors.
import pandas as pd
df = pd.DataFrame({'A': ['foo', 'foo', 'bar'], 'B': ['one', 'two', 'one']})
crosstab = pd.crosstab(df.A, df.B)
print(crosstab)
B one two
A
bar 1 0
foo 1 1
---
#DataAnalysis #Pandas #Merging #Joining
Part 5: Pandas - Merging & Concatenating
#56.
pd.merge()Merges DataFrame or named Series objects with a database-style join.
import pandas as pd
df1 = pd.DataFrame({'key': ['A', 'B'], 'val1': [1, 2]})
df2 = pd.DataFrame({'key': ['A', 'B'], 'val2': [3, 4]})
merged = pd.merge(df1, df2, on='key')
print(merged)
key val1 val2
0 A 1 3
1 B 2 4
#57.
pd.concat()Concatenates pandas objects along a particular axis.
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2]})
df2 = pd.DataFrame({'A': [3, 4]})
concatenated = pd.concat([df1, df2])
print(concatenated)
A
0 1
1 2
0 3
1 4
#58.
df.join()Joins columns with other DataFrame(s) on index or on a key column.
❤2🎉1
Forwarded from Data Analytics
pandas Cheat Sheet.pdf
1.6 MB
👨🏻💻 To easily read, inspect, clean, and manipulate data however you want, you need to master pandas!
https://t.me/DataAnalyticsX
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍5🔥2🆒1
🚀 #Pandas Cheat Sheet for Everyday Data Work
This covers the essential functions we use in day to day work like inspecting data, selecting rows and columns, cleaning, manipulating and doing quick aggregations.
https://t.me/CodeProgrammer❤️
This covers the essential functions we use in day to day work like inspecting data, selecting rows and columns, cleaning, manipulating and doing quick aggregations.
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤12👍7🔥1
Mastering pandas%22.pdf
1.6 MB
👨🏻💻 If I've worked with messy and error-prone data this time, I don't know how much time and energy I've wasted. Incomplete tables, repetitive records, and unorganized data. Exactly the kind of things that make analysis difficult and frustrate you.
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8👍2