كود #Python باستخدام مكتبة #NumPy للحصول على #Index العناصر المرتبة لمصفوفة معطاة.
هذا الكود قد تحتاجه في حال اردت الدخول في مجال #الذكاء_الصنعي
قم بدعوة اصدقاءك من اجل المزيد: @CodeProgrammer
هذا الكود قد تحتاجه في حال اردت الدخول في مجال #الذكاء_الصنعي
قم بدعوة اصدقاءك من اجل المزيد: @CodeProgrammer
👍1
  كود #Pyhton باستخدام مكتبة #NumPy من اجل معرفة تاريخ الحالي وتاريخ الامس وتاريخ الغد 
للمزيد: @CodeProgrammer
للمزيد: @CodeProgrammer
👍1
  مقارنة اداء السرعة مابين مصفوفة #NumPy و مصفوفة #Python العادية مع OUTPUT ماذا لاحظت!!
للمزيد: @CodeProgrammer
قم بدعوة اصدقاءك من اجل المزيد والاستمرار
للمزيد: @CodeProgrammer
قم بدعوة اصدقاءك من اجل المزيد والاستمرار
منشور علمي عن مكتبة #NumPy المفيدة في مجال #Data_Science وبعض الامثلة لتوابعها مع الشرح.
للمزيد قم بدعوة اصدقاءك للافادة والاستفادة: @CodeProgrammer
للمزيد قم بدعوة اصدقاءك للافادة والاستفادة: @CodeProgrammer
منشور علمي عن خوارزمية #SVM التي هي اختصار ل Support Vector Machine يشرح هذا المنشور الخوارزمية بشكل مفصل بالاضافة لمثال برمجي باستخدام مكتبة #NumPy احدى مكتبات #Python 
قم بدعوة اصدقاءك للاستفادة والافادة: @CodeProgrammer
قم بدعوة اصدقاءك للاستفادة والافادة: @CodeProgrammer
Numpy Cheat sheet for Data Scientists
Is it useful to you❓ 
📂  Tags: #ML #Numpy #Python
http://t.me/codeprogrammer⭐️ 
Is it useful to you
http://t.me/codeprogrammer
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍35❤11
  NumPy Practical Examples: Useful Techniques
Link: https://realpython.com/numpy-example/
#numpy #python
https://t.me/CodeProgrammer⭐ 🐍 
Link: https://realpython.com/numpy-example/
#numpy #python
https://t.me/CodeProgrammer
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍22❤4💯4
  Numpy @CodeProgrammer.pdf
    813.2 KB
  👨🏻💻 For the past few days, I've been busy preparing this comprehensive tutorial on the NumPy library for data science, trying to cover all the tips and tricks of this library.
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammer✅ 
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍10💯7
  @Codeprogrammer Cheat Sheet Numpy.pdf
    213.7 KB
  This checklist covers the essentials of NumPy in one place, helping you:
- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays
…and much more!
Feel free to share if you found this useful, and let me know in the comments if I missed anything!
⚡️  BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟 
- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays
…and much more!
Feel free to share if you found this useful, and let me know in the comments if I missed anything!
#NumPy #Python #DataScience #MachineLearning #Automation #DeepLearning #Programming #Tech #DataAnalysis #SoftwareDevelopment #Coding #TechTips #PythonForDataScience
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤9👍8
  9 machine learning concepts for ML engineers!
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
1️⃣  4 strategies for Multi-GPU Training.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
2️⃣  4 ways to test models in production
- While testing a model in production might sound risky, ML teams do it all the time, and it isn’t that complicated.
- Implemented here: https://lnkd.in/g33mASMM
3️⃣  Training & inference time complexity of 10 ML algorithms
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
4️⃣  Regression & Classification Loss Functions.
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
5️⃣  Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
6️⃣  15 Pandas to Polars to SQL to PySpark Translations.
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
7️⃣  11 most important plots in data science
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
8️⃣  11 types of variables in a dataset
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
9️⃣  NumPy cheat sheet for data scientists
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
🔗  Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
📱  Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
(explained as visually as possible)
Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.
- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ
- While testing a model in production might sound risky, ML teams do it all the time, and it isn’t that complicated.
- Implemented here: https://lnkd.in/g33mASMM
Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m
- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H
- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT
- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND
- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF
Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p
- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE
#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤11👍8💯1
  