Python | Machine Learning | Coding | R
67.1K subscribers
1.24K photos
89 videos
152 files
900 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
🐼 20 of the most used Pandas + PDF functions

👨🏻‍💻 The first time I used Pandas, I was supposed to quickly clean and organize a raw and complex dataset with the help of Pandas functions. Using the groupby function, I was able to categorize the data and get in-depth analysis of customer behavior. Best of all, it was when I used loc and iloc that I could easily filter the data.

✔️ Since then I decided to prepare a list of the most used Pandas functions that I use on a daily basis. Now this list is ready! In the following, I will introduce 20 of the best and most used Pandas functions:



🏳️‍🌈 read_csv(): Fast data upload from CSV files

🏳️‍🌈 head(): look at the first five rows of the database to start..

🏳️‍🌈 info(): Checking data structure such as data type and empty values.

🏳️‍🌈 describe(): Generate descriptive statistics for numeric columns.

🏳️‍🌈 loc[ ]: accesses rows and columns by label or condition.

🏳️‍🌈 iloc[ ]: Access data by row number.

🏳️‍🌈 merge(): Merge dataframes with common columns.

🏳️‍🌈 groupby(): Grouping for easier analysis.

🏳️‍🌈 pivot_table(): Summarize data in pivot table format.

🏳️‍🌈 to_csv(): Save data as a CSV file.

🏳️‍🌈 pd.concat(): Concatenate multiple dataframes in rows or columns.

🏳️‍🌈 pd.melt(): Convert wide format data to long format.

🏳️‍🌈 pd.pivot_table(): Create a pivot table with multiple levels.

🏳️‍🌈 pd.cut(): Split the data into specific intervals.

🏳️‍🌈 pd.qcut(): Sort data by percentage.

🏳️‍🌈 pd.merge(): Merge data in database style for advanced linking.

🏳️‍🌈 DataFrame.apply(): Apply a custom function to the data.

🏳️‍🌈 DataFrame.groupby(): Analyze grouped data.

🏳️‍🌈 DataFrame.drop_duplicates(): Drop duplicate rows.

🏳️‍🌈 DataFrame.to_excel(): Save data directly to Excel file.


🐼 Pandas Functions
📄 PDF

#MachineLearning #DeepLearning #BigData #Datascience #ML #Pandas #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics #LLMs #AIagents

http://t.me/codeprogrammer ⭐️
Please open Telegram to view this post
VIEW IN TELEGRAM
👍262
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼 

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg")  # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


more explain: https://hackmd.io/@husseinsheikho/imageprocessing

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
3