Python | Machine Learning | Coding | R
67.2K subscribers
1.25K photos
89 videos
153 files
903 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and Rβ€”your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘12πŸ’―5πŸ‘Ύ2
πŸ”— Machine Learning from Scratch by Danny Friedman

This book is for readers looking to learn new #machinelearning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different #algorithms create the models they do and the advantages and disadvantages of each one.

This book will be most helpful for those with practice in basic modeling. It does not review best practicesβ€”such as feature engineering or balancing response variablesβ€”or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.


https://dafriedman97.github.io/mlbook/content/introduction.html

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.me/CodeProgrammer βœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘11❀2πŸ’―2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘9
πŸ”₯ Trending Repository: best-of-ml-python

πŸ“ Description: πŸ† A ranked list of awesome machine learning Python libraries. Updated weekly.

πŸ”— Repository URL: https://github.com/lukasmasuch/best-of-ml-python

🌐 Website: https://ml-python.best-of.org

πŸ“– Readme: https://github.com/lukasmasuch/best-of-ml-python#readme

πŸ“Š Statistics:
🌟 Stars: 22.3K stars
πŸ‘€ Watchers: 444
🍴 Forks: 3K forks

πŸ’» Programming Languages: Not available

🏷️ Related Topics:
#python #nlp #data_science #machine_learning #deep_learning #tensorflow #scikit_learn #keras #ml #data_visualization #pytorch #transformer #data_analysis #gpt #automl #jax #data_visualizations #gpt_3 #chatgpt


==================================
🧠 By: https://t.me/DataScienceM
❀7
πŸ’‘ Building a Simple Convolutional Neural Network (CNN)

Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.

import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np

# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 2. Define the CNN architecture
model = models.Sequential()

# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())

# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)

# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

# Print a summary of the model layers
model.summary()

# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)

# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")


Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.

#Python #DeepLearning #CNN #Keras #TensorFlow

━━━━━━━━━━━━━━━
By: @CodeProgrammer ✨
❀12