#DataScience #MachineLearning #DeepLearning #Python #AI #MLProjects #DataAnalysis #ExplainableAI #100DaysOfCode #TechEducation #MLInterviewPrep #NeuralNetworks #MathForML #Statistics #Coding #AIForEveryone #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
π12π―5π₯3β€1π1π1
Foundations of Large Language Models
Download it: https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/foundations-of-large-language-/2501.09223v1.pdf
#LLM #AIresearch #DeepLearning #NLP #FoundationModels #MachineLearning #LanguageModels #ArtificialIntelligence #NeuralNetworks #AIPaper
Download it: https://readwise-assets.s3.amazonaws.com/media/wisereads/articles/foundations-of-large-language-/2501.09223v1.pdf
#LLM #AIresearch #DeepLearning #NLP #FoundationModels #MachineLearning #LanguageModels #ArtificialIntelligence #NeuralNetworks #AIPaper
π8π₯3π―1
#MLOps #MachineLearning #DataScience #AI #ModelMonitoring #MLPipelines #Docker #MLSystemDesign #ExperimentTracking #LLMOps #NeuralNetworks #DeepLearning #AITools #MLProjects #MLOpsRoadmap
Please open Telegram to view this post
VIEW IN TELEGRAM
π15π₯2β€1
Mastering CNNs: From Kernels to Model Evaluation
If you're learning Computer Vision, understanding the Conv2D layer in Convolutional Neural Networks (#CNNs) is crucial. Letβs break it down from basic to advanced.
1. What is Conv2D?
Conv2D is a 2D convolutional layer used in image processing. It takes an image as input and applies filters (also called kernels) to extract features.
2. What is a Kernel (or Filter)?
A kernel is a small matrix (like 3x3 or 5x5) that slides over the image and performs element-wise multiplication and summing.
A 3x3 kernel means the filter looks at 3x3 chunks of the image.
The kernel detects patterns like edges, textures, etc.
Example:
A vertical edge detection kernel might look like:
[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]
3. What Are Filters in Conv2D?
In CNNs, we donβt use just one filterβwe use multiple filters in a single Conv2D layer.
Each filter learns to detect a different feature (e.g., horizontal lines, curves, textures).
So if you have 32 filters in the Conv2D layer, youβll get 32 feature maps.
More Filters = More Features = More Learning Power
4. Kernel Size and Its Impact
Smaller kernels (e.g., 3x3) are most common; they capture fine details.
Larger kernels (e.g., 5x5 or 7x7) capture broader patterns, but increase computational cost.
Many CNNs stack multiple small kernels (like 3x3) to simulate a large receptive field while keeping complexity low.
5. Life Cycle of a CNN Model (From Data to Evaluation)
Letβs visualize how a CNN model works from start to finish:
Step 1: Data Collection
Images are gathered and labeled (e.g., cat vs dog).
Step 2: Preprocessing
Resize images
Normalize pixel values
Data augmentation (flipping, rotation, etc.)
Step 3: Model Building (Conv2D layers)
Add Conv2D + Activation (ReLU)
Use Pooling layers (MaxPooling2D)
Add Dropout to prevent overfitting
Flatten and connect to Dense layers
Step 4: Training the Model
Feed data in batches
Use loss function (like cross-entropy)
Optimize using backpropagation + optimizer (like Adam)
Adjust weights over several epochs
Step 5: Evaluation
Test the model on unseen data
Use metrics like Accuracy, Precision, Recall, F1-Score
Visualize using confusion matrix
Step 6: Deployment
Convert model to suitable format (e.g., ONNX, TensorFlow Lite)
Deploy on web, mobile, or edge devices
Summary
Conv2D uses filters (kernels) to extract image features.
More filters = better feature detection.
The CNN pipeline takes raw image data, learns features, and gives powerful predictions.
If this helped you, let me know! Or feel free to share your experience learning CNNs!
π― BEST DATA SCIENCE CHANNELS ON TELEGRAM π
If you're learning Computer Vision, understanding the Conv2D layer in Convolutional Neural Networks (#CNNs) is crucial. Letβs break it down from basic to advanced.
1. What is Conv2D?
Conv2D is a 2D convolutional layer used in image processing. It takes an image as input and applies filters (also called kernels) to extract features.
2. What is a Kernel (or Filter)?
A kernel is a small matrix (like 3x3 or 5x5) that slides over the image and performs element-wise multiplication and summing.
A 3x3 kernel means the filter looks at 3x3 chunks of the image.
The kernel detects patterns like edges, textures, etc.
Example:
A vertical edge detection kernel might look like:
[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]
3. What Are Filters in Conv2D?
In CNNs, we donβt use just one filterβwe use multiple filters in a single Conv2D layer.
Each filter learns to detect a different feature (e.g., horizontal lines, curves, textures).
So if you have 32 filters in the Conv2D layer, youβll get 32 feature maps.
More Filters = More Features = More Learning Power
4. Kernel Size and Its Impact
Smaller kernels (e.g., 3x3) are most common; they capture fine details.
Larger kernels (e.g., 5x5 or 7x7) capture broader patterns, but increase computational cost.
Many CNNs stack multiple small kernels (like 3x3) to simulate a large receptive field while keeping complexity low.
5. Life Cycle of a CNN Model (From Data to Evaluation)
Letβs visualize how a CNN model works from start to finish:
Step 1: Data Collection
Images are gathered and labeled (e.g., cat vs dog).
Step 2: Preprocessing
Resize images
Normalize pixel values
Data augmentation (flipping, rotation, etc.)
Step 3: Model Building (Conv2D layers)
Add Conv2D + Activation (ReLU)
Use Pooling layers (MaxPooling2D)
Add Dropout to prevent overfitting
Flatten and connect to Dense layers
Step 4: Training the Model
Feed data in batches
Use loss function (like cross-entropy)
Optimize using backpropagation + optimizer (like Adam)
Adjust weights over several epochs
Step 5: Evaluation
Test the model on unseen data
Use metrics like Accuracy, Precision, Recall, F1-Score
Visualize using confusion matrix
Step 6: Deployment
Convert model to suitable format (e.g., ONNX, TensorFlow Lite)
Deploy on web, mobile, or edge devices
Summary
Conv2D uses filters (kernels) to extract image features.
More filters = better feature detection.
The CNN pipeline takes raw image data, learns features, and gives powerful predictions.
If this helped you, let me know! Or feel free to share your experience learning CNNs!
#DeepLearning #ComputerVision #CNNs #Conv2D #MachineLearning #AI #NeuralNetworks #DataScience #ModelTraining #ImageProcessing
Please open Telegram to view this post
VIEW IN TELEGRAM
π13β€3π―2
Dive deep into the world of Transformers with this comprehensive PyTorch implementation guide. Whether you're a seasoned ML engineer or just starting out, this resource breaks down the complexities of the Transformer model, inspired by the groundbreaking paper "Attention Is All You Need".
https://www.k-a.in/pyt-transformer.html
This guide offers:
By following along, you'll gain a solid understanding of how Transformers work and how to implement them from scratch.
#MachineLearning #DeepLearning #PyTorch #Transformer #AI #NLP #AttentionIsAllYouNeed #Coding #DataScience #NeuralNetworksο»Ώ
Please open Telegram to view this post
VIEW IN TELEGRAM
π3
rnn.pdf
5.6 MB
π Understanding Recurrent Neural Networks (RNNs) Cheat Sheet!
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
π Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
π§ Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
π Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
π Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!π‘
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:
π Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.
π§ Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.
π Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.
π Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems!
#RNN #RecurrentNeuralNetworks #DeepLearning #NLP #LSTM #GRU #TimeSeriesForecasting #MachineLearning #NeuralNetworks #AIApplications #SequenceModeling #MLCheatSheet #PyTorch #TensorFlow #DataScience
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€11π3
The 2025 MIT deep learning course is excellent, covering neural networks, CNNs, RNNs, and LLMs. You build three projects for hands-on experience as part of the course. It is entirely free. Highly recommended for beginners.
Enroll Free: https://introtodeeplearning.com/
Enroll Free: https://introtodeeplearning.com/
#DeepLearning #MITCourse #NeuralNetworks #CNN #RNN #LLMs #AIForBeginners #FreeCourse #MachineLearning #IntroToDeepLearning #AIProjects #LearnAI #AI2025
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€7
10 GitHub repos to build a career in AI engineering:
(100% free step-by-step roadmap)
1οΈβ£ ML for Beginners by Microsoft
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo β https://lnkd.in/dCxStbYv
2οΈβ£ AI for Beginners by Microsoft
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo β https://lnkd.in/dwS5Jk9E
3οΈβ£ Neural Networks: Zero to Hero
Now that youβve grasped the foundations of AI/ML, itβs time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo β https://lnkd.in/dXAQWucq
4οΈβ£ DL Paper Implementations
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo β https://lnkd.in/dTrtDrvs
5οΈβ£ Made With ML
Now itβs time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo β https://lnkd.in/dYyjjBGb
6οΈβ£ Hands-on LLMs
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo β https://lnkd.in/dh2FwYFe
7οΈβ£ Advanced RAG Techniques
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo β https://lnkd.in/dBKxtX-D
8οΈβ£ AI Agents for Beginners by Microsoft
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo β https://lnkd.in/dbFeuznE
9οΈβ£ Agents Towards Production
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo β https://lnkd.in/dcwmamSb
π AI Engg. Hub
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo β https://lnkd.in/geMYm3b6
(100% free step-by-step roadmap)
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo β https://lnkd.in/dCxStbYv
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo β https://lnkd.in/dwS5Jk9E
Now that youβve grasped the foundations of AI/ML, itβs time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo β https://lnkd.in/dXAQWucq
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo β https://lnkd.in/dTrtDrvs
Now itβs time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo β https://lnkd.in/dYyjjBGb
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo β https://lnkd.in/dh2FwYFe
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo β https://lnkd.in/dBKxtX-D
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo β https://lnkd.in/dbFeuznE
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo β https://lnkd.in/dcwmamSb
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo β https://lnkd.in/geMYm3b6
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€7
Auto-Encoder & Backpropagation by hand βοΈ lecture video ~ πΊ https://byhand.ai/cv/10
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
β’ Encoder & Decoder (00:00)
β’ Equation (10:09)
β’ 4-2-4 AutoEncoder (16:38)
β’ 6-4-2-4-6 AutoEncoder (18:39)
β’ L2 Loss (20:49)
β’ L2 Loss Gradient (27:31)
β’ Backpropagation (30:12)
β’ Implement Backpropagation (39:00)
β’ Gradient Descent (44:30)
β’ Summary (51:39)
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
β’ Encoder & Decoder (00:00)
β’ Equation (10:09)
β’ 4-2-4 AutoEncoder (16:38)
β’ 6-4-2-4-6 AutoEncoder (18:39)
β’ L2 Loss (20:49)
β’ L2 Loss Gradient (27:31)
β’ Backpropagation (30:12)
β’ Implement Backpropagation (39:00)
β’ Gradient Descent (44:30)
β’ Summary (51:39)
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
β€4
Introduction to Deep Learning.pdf
10.5 MB
Introduction to Deep Learning
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBkπ± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
β€9
This media is not supported in your browser
VIEW IN TELEGRAM
GPU by hand βοΈ I drew this to show how a GPU speeds up an array operation of 8 elements in parallel over 4 threads in 2 clock cycles. Read more π
CPU
β’ It has one core.
β’ Its global memory has 120 locations (0-119).
β’ To use the GPU, it needs to copy data from the global memory to the GPU.
β’ After GPU is done, it will copy the results back.
GPU
β’ It has four cores to run four threads (0-3).
β’ It has a register file of 28 locations (0-27)
β’ This register file has four banks (0-3).
β’ All threads share the same register file.
β’ But they must read/write using the four banks.
β’ Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
CPU
β’ It has one core.
β’ Its global memory has 120 locations (0-119).
β’ To use the GPU, it needs to copy data from the global memory to the GPU.
β’ After GPU is done, it will copy the results back.
GPU
β’ It has four cores to run four threads (0-3).
β’ It has a register file of 28 locations (0-27)
β’ This register file has four banks (0-3).
β’ All threads share the same register file.
β’ But they must read/write using the four banks.
β’ Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
π5β€1
What is torch.nn really?
This article explains it quite well.
π Read
βοΈ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
When I started working with PyTorch, my biggest question was: "What is torch.nn?".
This article explains it quite well.
π Read
#pytorch #AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
β€4