Python | Machine Learning | Coding | R
63.1K subscribers
1.13K photos
68 videos
144 files
791 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🎉1
9 machine learning concepts for ML engineers!

(explained as visually as possible)

Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.

1️⃣ 4 strategies for Multi-GPU Training.

- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ

2️⃣ 4 ways to test models in production

- While testing a model in production might sound risky, ML teams do it all the time, and it isn’t that complicated.
- Implemented here: https://lnkd.in/g33mASMM

3️⃣ Training & inference time complexity of 10 ML algorithms

Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m

4️⃣ Regression & Classification Loss Functions.

- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H

5️⃣ Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.

- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT

6️⃣ 15 Pandas to Polars to SQL to PySpark Translations.

- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND

7️⃣ 11 most important plots in data science

- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF

8️⃣ 11 types of variables in a dataset

Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p

9️⃣ NumPy cheat sheet for data scientists

- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE

#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization


🔗 Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍8💯1
PySpark power guide.pdf
1.2 MB
𝗪𝗵𝘆 𝗘𝘃𝗲𝗿𝘆 𝗔𝘀𝗽𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿 𝗦𝗵𝗼𝘂𝗹𝗱 𝗟𝗲𝗮𝗿𝗻 𝗣𝘆𝗦𝗽𝗮𝗿𝗸

If you’re working with large datasets, tools like Pandas can hit limits fast. That’s where 𝗣𝘆𝗦𝗽𝗮𝗿𝗸 comes in—designed to scale effortlessly across big data workloads.

𝗪𝗵𝗮𝘁 𝗶𝘀 𝗣𝘆𝗦𝗽𝗮𝗿𝗸?
PySpark is the Python API for Apache Spark—a powerful engine for distributed data processing. It's widely used to build scalable ETL pipelines and handle millions of records efficiently.

𝗪𝗵𝘆 𝗣𝘆𝗦𝗽𝗮𝗿𝗸 𝗜𝘀 𝗮 𝗠𝘂𝘀𝘁-𝗛𝗮𝘃𝗲 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝘀:
✔️ Scales to handle massive datasets
✔️ Designed for distributed computing
✔️ Blends SQL with Python for flexible logic
✔️ Perfect for building end-to-end ETL pipelines
✔️ Supports integrations like Hive, Kafka, and Delta Lake

𝗤𝘂𝗶𝗰𝗸 𝗘𝘅𝗮𝗺𝗽𝗹𝗲:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv", header=True, inferSchema=True)
df.filter(df["age"] > 30).show()


#PySpark #DataEngineering #BigData #ETL #ApacheSpark #DistributedComputing #PythonForData #DataPipelines #SparkSQL #ScalableAnalytics


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍133
Numpy from basics to advanced.pdf
2.4 MB
📕 Mastering NumPy – From Basics to Advanced

NumPy is an essential library in the world of data science, widely recognized for its efficiency in numerical computations and data manipulation. This powerful tool simplifies complex operations with arrays, offering a faster and cleaner alternative to traditional Python lists and loops.

The "Mastering NumPy" booklet provides a comprehensive walkthrough—from array creation and indexing to mathematical/statistical operations and advanced topics like reshaping and stacking. All concepts are illustrated with clear, beginner-friendly examples, making it ideal for anyone aiming to boost their data handling skills.

#NumPy #Python #DataScience #MachineLearning #AI #BigData #DeepLearning #DataAnalysis


🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12💯5🏆41👾1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 DataCamp has officially partnered with Polars**—a cutting-edge DataFrame library designed for speed and efficiency!

To mark this exciting collaboration, **DataCamp
is offering free access to its brand-new course *“Introduction to Polars”* for the next 90 days. 🎉

This course is a great opportunity for learners and professionals alike to master data cleaning, transformation, and analysis with Polars' high-performance engine, lazy execution, and powerful groupby operations.

Unlock the full potential of data workflows and explore how Polars can supercharge large-scale data processing.

🔗 Start learning now:
https://www.datacamp.com/courses/introduction-to-polars

#DataScience #Polars #Python #BigData #DataEngineering #MachineLearning #DataAnalytics #OpenSource #DataCamp #FreeCourse #LearnDataScience


🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍4
🔥 How to become a data scientist in 2025?


1️⃣ First of all, strengthen your foundation (math and statistics) .

✏️ If you don't know math, you'll run into trouble wherever you go. Every model you build, every analysis you do, there's a world of math behind it. You need to know these things well:

Linear Algebra: Link

Calculus: Link

Statistics and Probability: Link



2️⃣ Then learn programming !

✏️ Without further ado, get started learning Python and SQL.

Python: Link

SQL language: Link

Data Structures and Algorithms: Link



3️⃣ Learn to clean and analyze data!

✏️ Data is always messy, and a data scientist must know how to organize it and extract insights from it.

Data cleansing: Link

Data visualization: Link



4️⃣ Learn machine learning !

✏️ Once you've mastered the basic skills, it's time to enter the world of machine learning. Here's what you need to know:

◀️ Supervised learning: regression, classification

◀️ Unsupervised learning: clustering, dimensionality reduction

◀️ Deep learning: neural networks, CNN, RNN

Stanford University CS229 course: Link



5️⃣ Get to know big data and cloud computing !

✏️ Large companies are looking for people who can work with large volumes of data.

◀️ Big data tools (e.g. Hadoop, Spark, Dask)

◀️ Cloud services (AWS, GCP, Azure)



6️⃣ Do a real project and build a portfolio !

✏️ Everything you've learned so far is worthless without a real project!

◀️ Participate in Kaggle and work with real data.

◀️ Do a project from scratch (from data collection to model deployment)

◀️ Put your code on GitHub.

Open Source Data Science Projects: Link



7️⃣ It's time to learn MLOps and model deployment!

✏️ Many people just build models but don't know how to deploy them. But companies want someone who can put the model into action!

◀️ Machine learning operationalization (monitoring, updating models)

◀️ Model deployment tools: Flask, FastAPI, Docker

Stanford University MLOps Course: Link



8️⃣ Always stay up to date and network!

✏️ Follow research articles on arXiv and Google Scholar.

Papers with Code website: link

AI Research at Google website: link

#DataScience #HowToBecomeADataScientist #ML2025 #Python #SQL #MachineLearning #MathForDataScience #BigData #MLOps #DeepLearning #AIResearch #DataVisualization #PortfolioProjects #CloudComputing #DSCareerPath

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍5🔥1
𝗠𝗮𝘀𝘁𝗲𝗿_𝗣𝘆𝗦𝗽𝗮𝗿𝗸_𝗟𝗶𝗸𝗲_𝗮_𝗣𝗿𝗼_–_𝗔𝗹𝗹_𝗶𝗻_𝗢𝗻𝗲_𝗚𝘂𝗶𝗱𝗲_𝗳𝗼𝗿_𝗗𝗮𝘁𝗮_𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝘀.pdf
2.6 MB
𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝗦𝗽𝗮𝗿𝗸 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼 – 𝗔𝗹𝗹-𝗶𝗻-𝗢𝗻𝗲 𝗚𝘂𝗶𝗱𝗲 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝘀

If you're a data engineer, aspiring Spark developer, or someone preparing for big data interviews — this one is for you.
I’m sharing a powerful, all-in-one PySpark notes sheet that covers both fundamentals and advanced techniques for real-world usage and interviews.

𝗪𝗵𝗮𝘁'𝘀 𝗶𝗻𝘀𝗶𝗱𝗲? • Spark vs MapReduce
• Spark Architecture – Driver, Executors, DAG
• RDDs vs DataFrames vs Datasets
• SparkContext vs SparkSession
• Transformations: map, flatMap, reduceByKey, groupByKey
• Optimizations – caching, persisting, skew handling, salting
• Joins – Broadcast joins, Shuffle joins
• Deployment modes – Cluster vs Client
• Real interview-ready Q&A from top use cases
• CSV, JSON, Parquet, ORC – Format comparisons
• Common commands, schema creation, data filtering, null handling

𝗪𝗵𝗼 𝗶𝘀 𝘁𝗵𝗶𝘀 𝗳𝗼𝗿? Data Engineers, Spark Developers, Data Enthusiasts, and anyone preparing for interviews or working on distributed systems.

#PySpark #DataEngineering #BigData #SparkArchitecture #RDDvsDataFrame #SparkOptimization #DistributedComputing #SparkInterviewPrep #DataPipelines #ApacheSpark #MapReduce #ETL #BroadcastJoin #ClusterComputing #SparkForEngineers

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍1