Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
67 videos
143 files
787 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
@Codeprogrammer Cheat Sheet Numpy.pdf
213.7 KB
This checklist covers the essentials of NumPy in one place, helping you:

- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays

…and much more!

Feel free to share if you found this useful, and let me know in the comments if I missed anything!

⚡️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟

#NumPy #Python #DataScience #MachineLearning #Automation #DeepLearning #Programming #Tech #DataAnalysis #SoftwareDevelopment #Coding #TechTips #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍8
Please open Telegram to view this post
VIEW IN TELEGRAM
👍144💯2
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🎉1
Four best-advanced university courses on NLP & LLM to advance your skills:

1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr

2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v

3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y

4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4

#LLM #python #AI #Agents #RAG #NLP

💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍103
Top 100+ questions%0A %22Google Data Science Interview%22.pdf
16.7 MB
💯 Top 100+ Google Data Science Interview Questions

🌟 Essential Prep Guide for Aspiring Candidates

Google is known for its rigorous data science interview process, which typically follows a hybrid format. Candidates are expected to demonstrate strong programming skills, solid knowledge in statistics and machine learning, and a keen ability to approach problems from a product-oriented perspective.

To succeed, one must be proficient in several critical areas: statistics and probability, SQL and Python programming, product sense, and case study-based analytics.

This curated list features over 100 of the most commonly asked and important questions in Google data science interviews. It serves as a comprehensive resource to help candidates prepare effectively and confidently for the challenge ahead.

#DataScience #GoogleInterview #InterviewPrep #MachineLearning #SQL #Statistics #ProductAnalytics #Python #CareerGrowth


https://t.me/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
👍172
@CodeProgrammer Matplotlib.pdf
4.3 MB
💯 Mastering Matplotlib in 20 Days

The Complete Visual Guide for Data Enthusiasts

Matplotlib is a powerful Python library for data visualization, essential not only for acing job interviews but also for building a solid foundation in analytical thinking and data storytelling.

This step-by-step tutorial guide walks learners through everything from the basics to advanced techniques in Matplotlib. It also includes a curated collection of the most frequently asked Matplotlib-related interview questions, making it an ideal resource for both beginners and experienced professionals.

#Matplotlib #DataVisualization #Python #DataScience #InterviewPrep #Analytics #TechCareer #LearnToCode

https://t.me/addlist/0f6vfFbEMdAwODBk 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍121💯1
9 machine learning concepts for ML engineers!

(explained as visually as possible)

Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.

1️⃣ 4 strategies for Multi-GPU Training.

- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ

2️⃣ 4 ways to test models in production

- While testing a model in production might sound risky, ML teams do it all the time, and it isn’t that complicated.
- Implemented here: https://lnkd.in/g33mASMM

3️⃣ Training & inference time complexity of 10 ML algorithms

Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m

4️⃣ Regression & Classification Loss Functions.

- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H

5️⃣ Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.

- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT

6️⃣ 15 Pandas to Polars to SQL to PySpark Translations.

- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND

7️⃣ 11 most important plots in data science

- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF

8️⃣ 11 types of variables in a dataset

Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p

9️⃣ NumPy cheat sheet for data scientists

- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE

#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization


🔗 Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍8💯1
This media is not supported in your browser
VIEW IN TELEGRAM
A new interactive sentiment visualization project has been developed, featuring a dynamic smiley face that reflects sentiment analysis results in real time. Using a natural language processing model, the system evaluates input text and adjusts the smiley face expression accordingly:

🙂 Positive sentiment

☹️ Negative sentiment

The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.

🔗 GitHub: https://lnkd.in/e_gk3hfe
📰 Article: https://lnkd.in/e_baNJd2

#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience

🔗 Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7👏3
from SQL to pandas.pdf
1.3 MB
🐼 "Comparison Between SQL and pandas" – A Handy Reference Guide

⚡️ As a data scientist, I often found myself switching back and forth between SQL and pandas during technical interviews. I was confident answering questions in SQL but sometimes struggled to translate the same logic into pandas – and vice versa.

🔸 To bridge this gap, I created a concise booklet in the form of a comparison table. It maps SQL queries directly to their equivalent pandas implementations, making it easy to understand and switch between both tools.

This reference guide has become an essential part of my interview prep. Before any interview, I quickly review it to ensure I’m ready to tackle data manipulation tasks using either SQL or pandas, depending on what’s required.

📕 Whether you're preparing for interviews or just want to solidify your understanding of both tools, this comparison guide is a great way to stay sharp and efficient.

#DataScience #SQL #pandas #InterviewPrep #Python #DataAnalysis #CareerGrowth #TechTips #Analytics

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13
Numpy from basics to advanced.pdf
2.4 MB
📕 Mastering NumPy – From Basics to Advanced

NumPy is an essential library in the world of data science, widely recognized for its efficiency in numerical computations and data manipulation. This powerful tool simplifies complex operations with arrays, offering a faster and cleaner alternative to traditional Python lists and loops.

The "Mastering NumPy" booklet provides a comprehensive walkthrough—from array creation and indexing to mathematical/statistical operations and advanced topics like reshaping and stacking. All concepts are illustrated with clear, beginner-friendly examples, making it ideal for anyone aiming to boost their data handling skills.

#NumPy #Python #DataScience #MachineLearning #AI #BigData #DeepLearning #DataAnalysis


🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12💯5🏆41👾1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 DataCamp has officially partnered with Polars**—a cutting-edge DataFrame library designed for speed and efficiency!

To mark this exciting collaboration, **DataCamp
is offering free access to its brand-new course *“Introduction to Polars”* for the next 90 days. 🎉

This course is a great opportunity for learners and professionals alike to master data cleaning, transformation, and analysis with Polars' high-performance engine, lazy execution, and powerful groupby operations.

Unlock the full potential of data workflows and explore how Polars can supercharge large-scale data processing.

🔗 Start learning now:
https://www.datacamp.com/courses/introduction-to-polars

#DataScience #Polars #Python #BigData #DataEngineering #MachineLearning #DataAnalytics #OpenSource #DataCamp #FreeCourse #LearnDataScience


🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍4
python_basics.pdf
212.3 KB
🚀 Master Python with Ease!

I've just compiled a set of clean and powerful Python Cheat Sheets to help beginners and intermediates speed up their coding workflow.

Whether you're brushing up on the basics or diving into data science, these sheets will save you time and boost your productivity.

📌 Topics Covered:
Python Basics
Jupyter Notebook Tips
Importing Libraries
NumPy Essentials
Pandas Overview

Perfect for students, developers, and anyone looking to keep essential Python knowledge at their fingertips.

#Python #CheatSheets #PythonTips #DataScience #JupyterNotebook #NumPy #Pandas #MachineLearning #AI #CodingTips #PythonForBeginners

🌟 Join the communities:
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
22👨‍💻4👍2🔥1🆒1
🔥 How to become a data scientist in 2025?


1️⃣ First of all, strengthen your foundation (math and statistics) .

✏️ If you don't know math, you'll run into trouble wherever you go. Every model you build, every analysis you do, there's a world of math behind it. You need to know these things well:

Linear Algebra: Link

Calculus: Link

Statistics and Probability: Link



2️⃣ Then learn programming !

✏️ Without further ado, get started learning Python and SQL.

Python: Link

SQL language: Link

Data Structures and Algorithms: Link



3️⃣ Learn to clean and analyze data!

✏️ Data is always messy, and a data scientist must know how to organize it and extract insights from it.

Data cleansing: Link

Data visualization: Link



4️⃣ Learn machine learning !

✏️ Once you've mastered the basic skills, it's time to enter the world of machine learning. Here's what you need to know:

◀️ Supervised learning: regression, classification

◀️ Unsupervised learning: clustering, dimensionality reduction

◀️ Deep learning: neural networks, CNN, RNN

Stanford University CS229 course: Link



5️⃣ Get to know big data and cloud computing !

✏️ Large companies are looking for people who can work with large volumes of data.

◀️ Big data tools (e.g. Hadoop, Spark, Dask)

◀️ Cloud services (AWS, GCP, Azure)



6️⃣ Do a real project and build a portfolio !

✏️ Everything you've learned so far is worthless without a real project!

◀️ Participate in Kaggle and work with real data.

◀️ Do a project from scratch (from data collection to model deployment)

◀️ Put your code on GitHub.

Open Source Data Science Projects: Link



7️⃣ It's time to learn MLOps and model deployment!

✏️ Many people just build models but don't know how to deploy them. But companies want someone who can put the model into action!

◀️ Machine learning operationalization (monitoring, updating models)

◀️ Model deployment tools: Flask, FastAPI, Docker

Stanford University MLOps Course: Link



8️⃣ Always stay up to date and network!

✏️ Follow research articles on arXiv and Google Scholar.

Papers with Code website: link

AI Research at Google website: link

#DataScience #HowToBecomeADataScientist #ML2025 #Python #SQL #MachineLearning #MathForDataScience #BigData #MLOps #DeepLearning #AIResearch #DataVisualization #PortfolioProjects #CloudComputing #DSCareerPath

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍5🔥1
𝗬𝗼𝘂𝗿_𝗗𝗮𝘁𝗮_𝗦𝗰𝗶𝗲𝗻𝗰𝗲_𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄_𝗦𝘁𝘂𝗱𝘆_𝗣𝗹𝗮𝗻.pdf
7.7 MB
1. Master the fundamentals of Statistics

Understand probability, distributions, and hypothesis testing

Differentiate between descriptive vs inferential statistics

Learn various sampling techniques

2. Get hands-on with Python & SQL

Work with data structures, pandas, numpy, and matplotlib

Practice writing optimized SQL queries

Master joins, filters, groupings, and window functions

3. Build real-world projects

Construct end-to-end data pipelines

Develop predictive models with machine learning

Create business-focused dashboards

4. Practice case study interviews

Learn to break down ambiguous business problems

Ask clarifying questions to gather requirements

Think aloud and structure your answers logically

5. Mock interviews with feedback

Use platforms like Pramp or connect with peers

Record and review your answers for improvement

Gather feedback on your explanation and presence

6. Revise machine learning concepts

Understand supervised vs unsupervised learning

Grasp overfitting, underfitting, and bias-variance tradeoff

Know how to evaluate models (precision, recall, F1-score, AUC, etc.)

7. Brush up on system design (if applicable)

Learn how to design scalable data pipelines

Compare real-time vs batch processing

Familiarize with tools: Apache Spark, Kafka, Airflow

8. Strengthen storytelling with data

Apply the STAR method in behavioral questions

Simplify complex technical topics

Emphasize business impact and insight-driven decisions

9. Customize your resume and portfolio

Tailor your resume for each job role

Include links to projects or GitHub profiles

Match your skills to job descriptions

10. Stay consistent and track progress

Set clear weekly goals

Monitor covered topics and completed tasks

Reflect regularly and adapt your plan as needed


#DataScience #InterviewPrep #MLInterviews #DataEngineering #SQL #Python #Statistics #MachineLearning #DataStorytelling #SystemDesign #CareerGrowth #DataScienceRoadmap #PortfolioBuilding #MockInterviews #JobHuntingTips


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍1