Python | Machine Learning | Coding | R
63.1K subscribers
1.13K photos
68 videos
144 files
790 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
The Big Book of Large Language Models by Damien Benveniste

Chapters:
1⃣ Introduction

🔢 Language Models Before Transformers

🔢 Attention Is All You Need: The Original Transformer Architecture

🔢 A More Modern Approach To The Transformer Architecture

🔢 Multi-modal Large Language Models

🔢 Transformers Beyond Language Models

🔢 Non-Transformer Language Models

🔢 How LLMs Generate Text

🔢 From Words To Tokens

1⃣0⃣ Training LLMs to Follow Instructions

1⃣1⃣ Scaling Model Training

1⃣🔢 Fine-Tuning LLMs

1⃣🔢 Deploying LLMs

Read it: https://book.theaiedge.io/

#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍174👎1
🔰 How to become a data scientist in 2025?

👨🏻‍💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


🔢 Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

Linear algebra: matrices, vectors, eigenvalues.

🔗 Course: MIT 18.06 Linear Algebra


Calculus: derivative, integral, optimization.

🔗 Course: MIT Single Variable Calculus


Statistics and probability: Bayes' theorem, hypothesis testing.

🔗 Course: Statistics 110



🔢 Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

Python: Pandas, NumPy, Matplotlib libraries

🔗 Course: FreeCodeCamp Python Course

SQL language: Join commands, Window functions, query optimization.

🔗 Course: Stanford SQL Course

Data structures and algorithms: arrays, linked lists, trees.

🔗 Course: MIT Introduction to Algorithms



🔢 Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

Data cleaning: Working with missing values ​​and detecting outliers.

🔗 Course: Data Cleaning

Data visualization: Matplotlib, Seaborn, Tableau

🔗 Course: Data Visualization Tutorial



🔢 Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

Supervised learning: regression, classification.

Unsupervised learning: clustering, PCA, anomaly detection.

Deep learning: neural networks, CNN, RNN


🔗 Course: CS229: Machine Learning



🔢 Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

Big Data Tools: Hadoop, Spark, Dask

Cloud platforms: AWS, GCP, Azure

🔗 Course: Data Engineering



🔢 Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

Kaggle competitions: solving real-world challenges.

End-to-End projects: data collection, modeling, implementation.

GitHub: Publish your projects on GitHub.

🔗 Platform: Kaggle🔗 Platform: ods.ai



🔢 Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

MLOps training: model versioning, monitoring, model retraining.

Deployment models: Flask, FastAPI, Docker

🔗 Course: Stanford MLOps Course



🔢 Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

Read scientific articles: arXiv, Google Scholar

Connect with the data community:

🔗 Site: Papers with code
🔗 Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3515👏1
Some people asked me about a resource for learning about Transformers.

Here's a good one I am sharing again -- it covers just about everything you need to know.

brandonrohrer.com/transformers

Amazing stuff. It's totally worth your weekend.

#Transformers #DeepLearning #NLP #AI #MachineLearning #SelfAttention #DataScience #Technology #Python #LearningResource


https://t.me/CodeProgrammer
👍76🔥2
Media is too big
VIEW IN TELEGRAM
🔥 MIT has updated its famous course 6.S191: Introduction to Deep Learning.

The program covers topics of #NLP, #CV, #LLM and the use of technology in medicine, offering a full cycle of training - from theory to practical classes using current versions of libraries.

The course is designed even for beginners: if you know how to take derivatives and multiply matrices, everything else will be explained in the process.

The lectures are released for free on YouTube and the #MIT platform on Mondays, with the first one already available

.

All slides, #code and additional materials can be found at the link provided.

📌 Fresh lecture : https://youtu.be/alfdI7S6wCY?si=6682DD2LlFwmghew

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🆒3🔥2🏆2💯1
🚀 Master the Transformer Architecture with PyTorch! 🧠

Dive deep into the world of Transformers with this comprehensive PyTorch implementation guide. Whether you're a seasoned ML engineer or just starting out, this resource breaks down the complexities of the Transformer model, inspired by the groundbreaking paper "Attention Is All You Need".

🔗 Check it out here:
https://www.k-a.in/pyt-transformer.html

This guide offers:

🌟 Detailed explanations of each component of the Transformer architecture.

🌟 Step-by-step code implementations in PyTorch.

🌟 Insights into the self-attention mechanism and positional encoding.

By following along, you'll gain a solid understanding of how Transformers work and how to implement them from scratch.

#MachineLearning #DeepLearning #PyTorch #Transformer #AI #NLP #AttentionIsAllYouNeed #Coding #DataScience #NeuralNetworks


💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟

🧠💻📊
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Four best-advanced university courses on NLP & LLM to advance your skills:

1. Advanced NLP -- Carnegie Mellon University
Link: https://lnkd.in/ddEtMghr

2. Recent Advances on Foundation Models -- University of Waterloo
Link: https://lnkd.in/dbdpUV9v

3. Large Language Model Agents -- University of California, Berkeley
Link: https://lnkd.in/d-MdSM8Y

4. Advanced LLM Agent -- University Berkeley
Link: https://lnkd.in/dvCD4HR4

#LLM #python #AI #Agents #RAG #NLP

💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
👍103
Full PyTorch Implementation of Transformer-XL

If you're looking to understand and experiment with Transformer-XL using PyTorch, this resource provides a clean and complete implementation. Transformer-XL is a powerful model that extends the Transformer architecture with recurrence, enabling learning dependencies beyond fixed-length segments.

The implementation is ideal for researchers, students, and developers aiming to dive deeper into advanced language modeling techniques.

Explore the code and start building:
https://www.k-a.in/pyt-transformerXL.html

#TransformerXL #PyTorch #DeepLearning #NLP #LanguageModeling #AI #MachineLearning #OpenSource #ResearchTools

https://t.me/CodeProgrammer
👍7
This media is not supported in your browser
VIEW IN TELEGRAM
A new interactive sentiment visualization project has been developed, featuring a dynamic smiley face that reflects sentiment analysis results in real time. Using a natural language processing model, the system evaluates input text and adjusts the smiley face expression accordingly:

🙂 Positive sentiment

☹️ Negative sentiment

The visualization offers an intuitive and engaging way to observe sentiment dynamics as they happen.

🔗 GitHub: https://lnkd.in/e_gk3hfe
📰 Article: https://lnkd.in/e_baNJd2

#AI #SentimentAnalysis #DataVisualization #InteractiveDesign #NLP #MachineLearning #Python #GitHubProjects #TowardsDataScience

🔗 Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7👏3
Anyone trying to deeply understand Large Language Models.

Checkout
Foundations of Large Language Models


by Tong Xiao & Jingbo Zhu. It’s one of the clearest, most comprehensive resource.

⭐️ Paper Link: arxiv.org/pdf/2501.09223

#LLMs #LargeLanguageModels #AIResearch #DeepLearning #MachineLearning #AIResources #NLP #AITheory #FoundationModels #AIUnderstanding



✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
14
Please open Telegram to view this post
VIEW IN TELEGRAM
8💯2👨‍💻1
rnn.pdf
5.6 MB
🔍 Understanding Recurrent Neural Networks (RNNs) Cheat Sheet!
Recurrent Neural Networks are a powerful type of neural network designed to handle sequential data. They are widely used in applications like natural language processing, speech recognition, and time-series prediction. Here's a quick cheat sheet to get you started:

📘 Key Concepts:
Sequential Data: RNNs are designed to process sequences of data, making them ideal for tasks where order matters.
Hidden State: Maintains information from previous inputs, enabling memory across time steps.
Backpropagation Through Time (BPTT): The method used to train RNNs by unrolling the network through time.

🔧 Common Variants:
Long Short-Term Memory (LSTM): Addresses vanishing gradient problems with gates to manage information flow.
Gated Recurrent Unit (GRU): Similar to LSTMs but with a simpler architecture.

🚀 Applications:
Language Modeling: Predicting the next word in a sentence.
Sentiment Analysis: Understanding sentiments in text.
Time-Series Forecasting: Predicting future data points in a series.

🔗 Resources:
Dive deeper with tutorials on platforms like Coursera, edX, or YouTube.
Explore open-source libraries like TensorFlow or PyTorch for implementation.
Let's harness the power of RNNs to innovate and solve complex problems! 💡

#RNN #RecurrentNeuralNetworks #DeepLearning #NLP #LSTM #GRU #TimeSeriesForecasting #MachineLearning #NeuralNetworks #AIApplications #SequenceModeling #MLCheatSheet #PyTorch #TensorFlow #DataScience


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍3
A curated collection of Kaggle notebooks showcasing how to build end-to-end AI applications using Hugging Face pretrained models, covering text, speech, image, and vision-language tasks — full tutorials and code available on GitHub:

1️⃣ Text-Based Applications

1.1. Building a Chatbot Using HuggingFace Open Source Models

https://lnkd.in/dku3bigK

1.2. Building a Text Translation System using Meta NLLB Open-Source Model

https://lnkd.in/dgdjaFds

2️⃣ Speech-Based Applications

2.1. Zero-Shot Audio Classification Using HuggingFace CLAP Open-Source Model

https://lnkd.in/dbgQgDyn

2.2. Building & Deploying a Speech Recognition System Using the Whisper Model & Gradio

https://lnkd.in/dcbp-8fN

2.3. Building Text-to-Speech Systems Using VITS & ArTST Models

https://lnkd.in/dwFcQ_X5

3️⃣ Image-Based Applications

3.1. Step-by-Step Guide to Zero-Shot Image Classification using CLIP Model

https://lnkd.in/dnk6epGB

3.2. Building an Object Detection Assistant Application: A Step-by-Step Guide

https://lnkd.in/d573SvYV

3.3. Zero-Shot Image Segmentation using Segment Anything Model (SAM)

https://lnkd.in/dFavEdHS

3.4. Building Zero-Shot Depth Estimation Application Using DPT Model & Gradio

https://lnkd.in/d9jjJu_g

4️⃣ Vision Language Applications

4.1. Building a Visual Question Answering System Using Hugging Face Open-Source Models

https://lnkd.in/dHNFaHFV

4.2. Building an Image Captioning System using Salesforce Blip Model

https://lnkd.in/dh36iDn9

4.3. Building an Image-to-Text Matching System Using Hugging Face Open-Source Models

https://lnkd.in/d7fsJEAF

➡️ You can find the articles and the codes for each article in this GitHub repo:

https://lnkd.in/dG5jfBwE

#HuggingFace #Kaggle #AIapplications #DeepLearning #MachineLearning #ComputerVision #NLP #SpeechRecognition #TextToSpeech #ImageProcessing #OpenSourceAI #ZeroShotLearning #Gradio

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
13💯1
Introduction to Deep Learning.pdf
10.5 MB
Introduction to Deep Learning
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.

Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.

What makes Deep Learning so powerful?

Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.

#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
9