Python | Machine Learning | Coding | R
63K subscribers
1.13K photos
68 videos
144 files
792 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป One of the most popular GitHub repositories for "learning and using algorithms in Python" is The Algorithms - Python repo with 196K stars.

โœ๏ธ It has a lot of organized and categorized code that you can use to find, read, and run different algorithms. Everything you can think of is here; from simple algorithms like sorting to advanced algorithms for machine learning, artificial intelligence, neural networks, and more.

โœ… Why should we use it?

๐Ÿ”ข For learning: If you're looking to learn algorithms in action, this is great.

๐Ÿ”ข For practice: You can take the codes, run them, and modify them to better understand.

๐Ÿ”ข For projects : You can even use the codes here in real-life or academic projects.

๐Ÿ”ข For interviews: If you're preparing for data science interviews, this is full of practical algorithms.


โ”Œ ๐Ÿณ๏ธโ€๐ŸŒˆ The Algorithms - Python
โ””
๐Ÿฑ GitHub-Repos

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.me/CodeProgrammer โœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘14โค3
Pandas Introduction to Advanced.pdf
854.8 KB
๐Ÿ“„ "Pandas Introduction to Advanced" booklet

๐Ÿ‘จ๐Ÿปโ€๐Ÿ’ป You can't attend a #datascience interview and not be asked about Pandas! But you don't have to memorize all its methods and functions! With this booklet, you'll learn everything you need.

โœ”๏ธ One of the most useful and interesting combinations is using #Pandas with #AWS Lambda, which can be very useful in real projects.

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.me/CodeProgrammer โœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘24๐Ÿ”ฅ2
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘11๐Ÿ’ฏ5๐Ÿ‘พ2
๐Ÿ”— Machine Learning from Scratch by Danny Friedman

This book is for readers looking to learn new #machinelearning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different #algorithms create the models they do and the advantages and disadvantages of each one.

This book will be most helpful for those with practice in basic modeling. It does not review best practicesโ€”such as feature engineering or balancing response variablesโ€”or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.


https://dafriedman97.github.io/mlbook/content/introduction.html

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming  #Keras

https://t.me/CodeProgrammer โœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘11โค2๐Ÿ’ฏ1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘9
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:

Function optimization and solving equations

Linear algebra operations

ODE integration and statistical analysis

Signal processing and spatial data manipulation

Data clustering and distance computation ...and much more!


#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData



๐Ÿ’ฏ BEST DATA SCIENCE CHANNELS ON TELEGRAM ๐ŸŒŸ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘11๐ŸŽ‰1
9 machine learning concepts for ML engineers!

(explained as visually as possible)

Here's a recap of several visual summaries posted in the Daily Dose of Data Science newsletter.

1๏ธโƒฃ 4 strategies for Multi-GPU Training.

- Training at scale? Learn these strategies to maximize efficiency and minimize model training time.
- Read here: https://lnkd.in/gmXF_PgZ

2๏ธโƒฃ 4 ways to test models in production

- While testing a model in production might sound risky, ML teams do it all the time, and it isnโ€™t that complicated.
- Implemented here: https://lnkd.in/g33mASMM

3๏ธโƒฃ Training & inference time complexity of 10 ML algorithms

Understanding the run time of ML algorithms is important because it helps you:
- Build a core understanding of an algorithm.
- Understand the data-specific conditions to use the algorithm
- Read here: https://lnkd.in/gKJwJ__m

4๏ธโƒฃ Regression & Classification Loss Functions.

- Get a quick overview of the most important loss functions and when to use them.
- Read here: https://lnkd.in/gzFPBh-H

5๏ธโƒฃ Transfer Learning, Fine-tuning, Multitask Learning, and Federated Learning.

- The holy grail of advanced learning paradigms, explained visually.
- Learn about them here: https://lnkd.in/g2hm8TMT

6๏ธโƒฃ 15 Pandas to Polars to SQL to PySpark Translations.

- The visual will help you build familiarity with four popular frameworks for data analysis and processing.
- Read here: https://lnkd.in/gP-cqjND

7๏ธโƒฃ 11 most important plots in data science

- A must-have visual guide to interpret and communicate your data effectively.
- Explained here: https://lnkd.in/geMt98tF

8๏ธโƒฃ 11 types of variables in a dataset

Understand and categorize dataset variables for better feature engineering.
- Explained here: https://lnkd.in/gQxMhb_p

9๏ธโƒฃ NumPy cheat sheet for data scientists

- The ultimate cheat sheet for fast, efficient numerical computing in Python.
- Read here: https://lnkd.in/gbF7cJJE

#MachineLearning #DataScience #MLEngineering #DeepLearning #AI #MLOps #BigData #Python #NumPy #Pandas #Visualization


๐Ÿ”— Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค10๐Ÿ‘8๐Ÿ’ฏ1
PySpark power guide.pdf
1.2 MB
๐—ช๐—ต๐˜† ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ

If youโ€™re working with large datasets, tools like Pandas can hit limits fast. Thatโ€™s where ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ comes inโ€”designed to scale effortlessly across big data workloads.

๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ?
PySpark is the Python API for Apache Sparkโ€”a powerful engine for distributed data processing. It's widely used to build scalable ETL pipelines and handle millions of records efficiently.

๐—ช๐—ต๐˜† ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—œ๐˜€ ๐—ฎ ๐— ๐˜‚๐˜€๐˜-๐—›๐—ฎ๐˜ƒ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€:
โœ”๏ธ Scales to handle massive datasets
โœ”๏ธ Designed for distributed computing
โœ”๏ธ Blends SQL with Python for flexible logic
โœ”๏ธ Perfect for building end-to-end ETL pipelines
โœ”๏ธ Supports integrations like Hive, Kafka, and Delta Lake

๐—ค๐˜‚๐—ถ๐—ฐ๐—ธ ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv", header=True, inferSchema=True)
df.filter(df["age"] > 30).show()


#PySpark #DataEngineering #BigData #ETL #ApacheSpark #DistributedComputing #PythonForData #DataPipelines #SparkSQL #ScalableAnalytics


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘13โค2