PySpark power guide.pdf
1.2 MB
๐ช๐ต๐ ๐๐๐ฒ๐ฟ๐ ๐๐๐ฝ๐ถ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐๐ฒ๐ฎ๐ฟ๐ป ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ
If youโre working with large datasets, tools like Pandas can hit limits fast. Thatโs where ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ comes inโdesigned to scale effortlessly across big data workloads.
๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ?
PySpark is the Python API for Apache Sparkโa powerful engine for distributed data processing. It's widely used to build scalable ETL pipelines and handle millions of records efficiently.
๐ช๐ต๐ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ ๐๐ ๐ฎ ๐ ๐๐๐-๐๐ฎ๐๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐:
โ๏ธ Scales to handle massive datasets
โ๏ธ Designed for distributed computing
โ๏ธ Blends SQL with Python for flexible logic
โ๏ธ Perfect for building end-to-end ETL pipelines
โ๏ธ Supports integrations like Hive, Kafka, and Delta Lake
๐ค๐๐ถ๐ฐ๐ธ ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ:
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
If youโre working with large datasets, tools like Pandas can hit limits fast. Thatโs where ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ comes inโdesigned to scale effortlessly across big data workloads.
๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ?
PySpark is the Python API for Apache Sparkโa powerful engine for distributed data processing. It's widely used to build scalable ETL pipelines and handle millions of records efficiently.
๐ช๐ต๐ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ ๐๐ ๐ฎ ๐ ๐๐๐-๐๐ฎ๐๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐:
โ๏ธ Scales to handle massive datasets
โ๏ธ Designed for distributed computing
โ๏ธ Blends SQL with Python for flexible logic
โ๏ธ Perfect for building end-to-end ETL pipelines
โ๏ธ Supports integrations like Hive, Kafka, and Delta Lake
๐ค๐๐ถ๐ฐ๐ธ ๐๐ ๐ฎ๐บ๐ฝ๐น๐ฒ:
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv", header=True, inferSchema=True)
df.filter(df["age"] > 30).show()
#PySpark #DataEngineering #BigData #ETL #ApacheSpark #DistributedComputing #PythonForData #DataPipelines #SparkSQL #ScalableAnalytics
Please open Telegram to view this post
VIEW IN TELEGRAM
๐13โค2
๐ ๐ฎ๐๐๐ฒ๐ฟ_๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ_๐๐ถ๐ธ๐ฒ_๐ฎ_๐ฃ๐ฟ๐ผ_โ_๐๐น๐น_๐ถ๐ป_๐ข๐ป๐ฒ_๐๐๐ถ๐ฑ๐ฒ_๐ณ๐ผ๐ฟ_๐๐ฎ๐๐ฎ_๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐.pdf
2.6 MB
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐๐ฆ๐ฝ๐ฎ๐ฟ๐ธ ๐๐ถ๐ธ๐ฒ ๐ฎ ๐ฃ๐ฟ๐ผ โ ๐๐น๐น-๐ถ๐ป-๐ข๐ป๐ฒ ๐๐๐ถ๐ฑ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐
If you're a data engineer, aspiring Spark developer, or someone preparing for big data interviews โ this one is for you.
Iโm sharing a powerful, all-in-one PySpark notes sheet that covers both fundamentals and advanced techniques for real-world usage and interviews.
๐ช๐ต๐ฎ๐'๐ ๐ถ๐ป๐๐ถ๐ฑ๐ฒ? โข Spark vs MapReduce
โข Spark Architecture โ Driver, Executors, DAG
โข RDDs vs DataFrames vs Datasets
โข SparkContext vs SparkSession
โข Transformations: map, flatMap, reduceByKey, groupByKey
โข Optimizations โ caching, persisting, skew handling, salting
โข Joins โ Broadcast joins, Shuffle joins
โข Deployment modes โ Cluster vs Client
โข Real interview-ready Q&A from top use cases
โข CSV, JSON, Parquet, ORC โ Format comparisons
โข Common commands, schema creation, data filtering, null handling
๐ช๐ต๐ผ ๐ถ๐ ๐๐ต๐ถ๐ ๐ณ๐ผ๐ฟ? Data Engineers, Spark Developers, Data Enthusiasts, and anyone preparing for interviews or working on distributed systems.
If you're a data engineer, aspiring Spark developer, or someone preparing for big data interviews โ this one is for you.
Iโm sharing a powerful, all-in-one PySpark notes sheet that covers both fundamentals and advanced techniques for real-world usage and interviews.
๐ช๐ต๐ฎ๐'๐ ๐ถ๐ป๐๐ถ๐ฑ๐ฒ? โข Spark vs MapReduce
โข Spark Architecture โ Driver, Executors, DAG
โข RDDs vs DataFrames vs Datasets
โข SparkContext vs SparkSession
โข Transformations: map, flatMap, reduceByKey, groupByKey
โข Optimizations โ caching, persisting, skew handling, salting
โข Joins โ Broadcast joins, Shuffle joins
โข Deployment modes โ Cluster vs Client
โข Real interview-ready Q&A from top use cases
โข CSV, JSON, Parquet, ORC โ Format comparisons
โข Common commands, schema creation, data filtering, null handling
๐ช๐ต๐ผ ๐ถ๐ ๐๐ต๐ถ๐ ๐ณ๐ผ๐ฟ? Data Engineers, Spark Developers, Data Enthusiasts, and anyone preparing for interviews or working on distributed systems.
#PySpark #DataEngineering #BigData #SparkArchitecture #RDDvsDataFrame #SparkOptimization #DistributedComputing #SparkInterviewPrep #DataPipelines #ApacheSpark #MapReduce #ETL #BroadcastJoin #ClusterComputing #SparkForEngineers
โ๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk๐ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐1