Python | Machine Learning | Coding | R
62.6K subscribers
1.13K photos
68 videos
143 files
788 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and Rโ€”your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
PySpark power guide.pdf
1.2 MB
๐—ช๐—ต๐˜† ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐˜€๐—ฝ๐—ถ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ

If youโ€™re working with large datasets, tools like Pandas can hit limits fast. Thatโ€™s where ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ comes inโ€”designed to scale effortlessly across big data workloads.

๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ?
PySpark is the Python API for Apache Sparkโ€”a powerful engine for distributed data processing. It's widely used to build scalable ETL pipelines and handle millions of records efficiently.

๐—ช๐—ต๐˜† ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—œ๐˜€ ๐—ฎ ๐— ๐˜‚๐˜€๐˜-๐—›๐—ฎ๐˜ƒ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€:
โœ”๏ธ Scales to handle massive datasets
โœ”๏ธ Designed for distributed computing
โœ”๏ธ Blends SQL with Python for flexible logic
โœ”๏ธ Perfect for building end-to-end ETL pipelines
โœ”๏ธ Supports integrations like Hive, Kafka, and Delta Lake

๐—ค๐˜‚๐—ถ๐—ฐ๐—ธ ๐—˜๐˜…๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ:

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv", header=True, inferSchema=True)
df.filter(df["age"] > 30).show()


#PySpark #DataEngineering #BigData #ETL #ApacheSpark #DistributedComputing #PythonForData #DataPipelines #SparkSQL #ScalableAnalytics


โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Ÿ‘13โค2
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ_๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ_๐—Ÿ๐—ถ๐—ธ๐—ฒ_๐—ฎ_๐—ฃ๐—ฟ๐—ผ_โ€“_๐—”๐—น๐—น_๐—ถ๐—ป_๐—ข๐—ป๐—ฒ_๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ_๐—ณ๐—ผ๐—ฟ_๐——๐—ฎ๐˜๐—ฎ_๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€.pdf
2.6 MB
๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐—ฆ๐—ฝ๐—ฎ๐—ฟ๐—ธ ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—ฃ๐—ฟ๐—ผ โ€“ ๐—”๐—น๐—น-๐—ถ๐—ป-๐—ข๐—ป๐—ฒ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐˜€

If you're a data engineer, aspiring Spark developer, or someone preparing for big data interviews โ€” this one is for you.
Iโ€™m sharing a powerful, all-in-one PySpark notes sheet that covers both fundamentals and advanced techniques for real-world usage and interviews.

๐—ช๐—ต๐—ฎ๐˜'๐˜€ ๐—ถ๐—ป๐˜€๐—ถ๐—ฑ๐—ฒ? โ€ข Spark vs MapReduce
โ€ข Spark Architecture โ€“ Driver, Executors, DAG
โ€ข RDDs vs DataFrames vs Datasets
โ€ข SparkContext vs SparkSession
โ€ข Transformations: map, flatMap, reduceByKey, groupByKey
โ€ข Optimizations โ€“ caching, persisting, skew handling, salting
โ€ข Joins โ€“ Broadcast joins, Shuffle joins
โ€ข Deployment modes โ€“ Cluster vs Client
โ€ข Real interview-ready Q&A from top use cases
โ€ข CSV, JSON, Parquet, ORC โ€“ Format comparisons
โ€ข Common commands, schema creation, data filtering, null handling

๐—ช๐—ต๐—ผ ๐—ถ๐˜€ ๐˜๐—ต๐—ถ๐˜€ ๐—ณ๐—ผ๐—ฟ? Data Engineers, Spark Developers, Data Enthusiasts, and anyone preparing for interviews or working on distributed systems.

#PySpark #DataEngineering #BigData #SparkArchitecture #RDDvsDataFrame #SparkOptimization #DistributedComputing #SparkInterviewPrep #DataPipelines #ApacheSpark #MapReduce #ETL #BroadcastJoin #ClusterComputing #SparkForEngineers

โœ‰๏ธ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

๐Ÿ“ฑ Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
โค7๐Ÿ‘1