import pandas as pd
df1 = pd.DataFrame({'val1': [1, 2]}, index=['A', 'B'])
df2 = pd.DataFrame({'val2': [3, 4]}, index=['A', 'B'])
joined = df1.join(df2)
print(joined)
val1 val2
A 1 3
B 2 4
#59.
pd.get_dummies()Converts categorical variable into dummy/indicator variables (one-hot encoding).
import pandas as pd
s = pd.Series(list('abca'))
dummies = pd.get_dummies(s)
print(dummies)
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
#60.
df.nlargest()Returns the first n rows ordered by columns in descending order.
import pandas as pd
df = pd.DataFrame({'population': [100, 500, 200, 800]})
print(df.nlargest(2, 'population'))
population
3 800
1 500
---
#DataAnalysis #NumPy #Arrays
Part 6: NumPy - Array Creation & Manipulation
#61.
np.array()Creates a NumPy ndarray.
import numpy as np
arr = np.array([1, 2, 3])
print(arr)
[1 2 3]
#62.
np.arange()Returns an array with evenly spaced values within a given interval.
import numpy as np
arr = np.arange(0, 5)
print(arr)
[0 1 2 3 4]
#63.
np.linspace()Returns an array with evenly spaced numbers over a specified interval.
import numpy as np
arr = np.linspace(0, 10, 5)
print(arr)
[ 0. 2.5 5. 7.5 10. ]
#64.
np.zeros()Returns a new array of a given shape and type, filled with zeros.
import numpy as np
arr = np.zeros((2, 3))
print(arr)
[[0. 0. 0.]
[0. 0. 0.]]
#65.
np.ones()Returns a new array of a given shape and type, filled with ones.
import numpy as np
arr = np.ones((2, 3))
print(arr)
[[1. 1. 1.]
[1. 1. 1.]]
#66.
np.random.rand()Creates an array of the given shape and populates it with random samples from a uniform distribution over [0, 1).
import numpy as np
arr = np.random.rand(2, 2)
print(arr)
[[0.13949386 0.2921446 ]
[0.52273283 0.77122228]]
(Note: Output values will be random)
#67.
arr.reshape()Gives a new shape to an array without changing its data.
import numpy as np
arr = np.arange(6)
reshaped_arr = arr.reshape((2, 3))
print(reshaped_arr)
[[0 1 2]
[3 4 5]]
#68.
np.concatenate()Joins a sequence of arrays along an existing axis.
import numpy as np
a = np.array([[1, 2]])
b = np.array([[3, 4]])
print(np.concatenate((a, b), axis=0))
[[1 2]
[3 4]]
#69.
np.vstack()Stacks arrays in sequence vertically (row wise).
import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.vstack((a, b)))
[[1 2]
[3 4]]
#70.
np.hstack()Stacks arrays in sequence horizontally (column wise).
import numpy as np
a = np.array([1, 2])
b = np.array([3, 4])
print(np.hstack((a, b)))
[1 2 3 4]
---
#DataAnalysis #NumPy #Math #Statistics
Part 7: NumPy - Mathematical & Statistical Functions
#71.
np.mean()Computes the arithmetic mean along the specified axis.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.mean(arr))
3.0
#72.
np.median()Computes the median along the specified axis.
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(np.median(arr))
3.0
#73.
np.std()Computes the standard deviation along the specified axis.