Python | Machine Learning | Coding | R
67.3K subscribers
1.25K photos
89 videos
153 files
906 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
Title: #Face_Detection using #Python and #OpenCV.

كود #بايثون للكشف عن #الوجوه باستخدام مكتبة #opencv مرفقا بالشرح ونتيجة الخرج بالاضافة ل #Source_Code الخاص بالبرنامج.

للمزيد قم بدعوة اصدقاءك للاستفادة: @CodeProgrammer

مجموعة القناة:
@PythonArab
Title: #Smile_Detection using #Python and #OpenCV.

كود #بايثون للكشف عن #ابتسامة_الوجه باستخدام مكتبة #opencv اعتمادا على ملامح #الوجه و #العين مرفقا بالشرح ونتيجة الخرج بالاضافة ل #Source_Code الخاص بالكود.

للمزيد قم بدعوة اصدقاءك للاستفادة: @CodeProgrammer

مجموعة القناة:
@PythonArab
Title: #Cars_Detection using #Python and #OpenCV

كود #بايثون للكشف عن #السيارات المتحركة عن طريق #الفيديو باستخدام مكتبة #OpenCV مرفقا بالشرح لهذا الكود بالاضافة لنتيجة التنفيذ و #Source_Code لهذا الكود.

للمزيد قم بمشاركة المنشور ودعوة اصدقاءك للاستفادة: @CodeProgrammer
Title: Build Screen Recorder using #Python.

#مشروع_برمجي مميز يتحدث عن كيفية بناء برنامج لتسجيل #الشاشة باستخدام #بايثون اعتمادا على مكتبة #OpenCv.
كافة التفاصيل والشروحات والاكواد البرمجية متوفرة ضمن المنشور.

المصدر: #DynamicCoding

للمزيد قم بدعوة اصدقاءك للاستفادة: @CodeProgrammer

قناة لتحميل الكتب البرمجية: @DataScience_Books

مجموعة القناة: @PythonArab
Title: Access Android Camera Using OpenCV.

#منشور_علمي يتحدث عن كيفية فتح #الكاميرا باستخدام #بايثون اعتمادا على مكتبة #OpenCv.

كافة التفاصيل والشروحات والاكواد البرمجية متوفرة ضمن المنشور بالاضافة ل #Source_Code لهذا المنشور.

قناة لتحميل الكتب البرمجية:
@DataScience_Books

مجموعة القناة:
@PythonArab

للمزيد قم بدعوة اصدقاءك للاستفادة:
@CodeProgrammer
Title: Pedestrian Detection Using #OpenCV - #Python.

#منشور_علمي مميز يتحدث عن كيفية #الكشف عن الاشخاص المارة في الشارع والتعرف عليهم من خلال مستطيل كما هو مبين في المنشور؛ اعتمادا على مكتبة #OpenCV و خوارزميتي #HOG و #SVM.

كافة التفاصيل والشروحات والاكواد البرمجية متوفرة ضمن المنشور بالاضافة ل #الكود_البرمجي اسفل المنشور.

🔴 قناة لتحميل الكتب البرمجية:
@DataScience_Books

🟢 مجموعة القناة:
@PythonArab

🟡 للمزيد قم بدعوة اصدقاءك للاستفادة:
@CodeProgrammer
👍1
Title: How to #blur faces in images using #OpenCv.

#programming_post talking about one of the ways to blur faces in photos using the #OpenCv library and the classifier #haarcascade_frontalface_alt

⛔️ يمكن تحميل المصنف المذكور من خلال #GitHub.

⛔️ المصدر والكود:
https://www.geeksforgeeks.org/how-to-blur-faces-in-images-using-opencv-in-python/amp/

🔴 انضم لقناة الباحثين البرمجية:
@DataScience_Books

🟢 انضم لمجتمع بايثون العربي:
@PythonArab

🟡 شارك القناة للآخرين:
@CodeProgrammer
👍1
Title: Auto-capture Selfie by Detecting Smile using #Python.

🇬🇧 Everyone loves a smiling picture, so we will develop a project which will capture images every time you #smile. This is a simple machine learning project for beginners and we will use #OpenCV library.

Project download link here.

🇸🇦 #مشروع_برمجي لالتقاط الصور اعتمادا على ابتسامة الوجه باستخدام مكتبة #OpenCV، كافة التفاصيل والشروحات والكود متوفرة ضمن المنشور.

رابط تحميل المشروع هنا.

By: @CodeProgrammer On Telegram.
👍1
Running a Neural Network Model in OpenCV

Many machine learning models have been developed, each with strengths and weaknesses. This catalog is not complete without neural network models. In OpenCV, you can use a neural network model developed using another framework. In this post, you will learn about the workflow of applying a neural network in OpenCV. Specifically, you will learn:

🏐 What OpenCV can use in its neural network model
🏐 How to prepare a neural network model for OpenCV

Read: https://machinelearningmastery.com/running-a-neural-network-model-in-opencv/

#NeuralNetworks #OpenCV #MachineLearning #AI #DeepLearning #ModelDeployment #ComputerVision #TechTutorials #DataScience #MLModels

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102
🚀 Comprehensive Tutorial: Build a Folder Monitoring & Intruder Detection System in Python

In this comprehensive, step-by-step tutorial, you will learn how to build a real-time folder monitoring and intruder detection system using Python.

🔐 Your Goal:
Create a background program that:
- Monitors a specific folder on your computer.
- Instantly captures a photo using the webcam whenever someone opens that folder.
- Saves the photo with a timestamp in a secure folder.
- Runs automatically when Windows starts.
- Keeps running until you manually stop it (e.g., via Task Manager or a hotkey).

Read and get code: https://hackmd.io/@husseinsheikho/Build-a-Folder-Monitoring

#Python #Security #FolderMonitoring #IntruderDetection #OpenCV #FaceCapture #Automation #Windows #TaskScheduler #ComputerVision


✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥1🎉1
🚀 Comprehensive Guide: How to Prepare for an Image Processing Job Interview – 500 Most Common Interview Questions

Let's start: https://hackmd.io/@husseinsheikho/IP

#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics

✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
4👎1🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🥇 This repo is like gold for every data scientist!

Just open your browser; a ton of interactive exercises and real experiences await you. Any question about statistics, probability, Python, or machine learning, you'll get the answer right there! With code, charts, even animations. This way, you don't waste time, and what you learn really sticks in your mind!

⬅️ Data science statistics and probability topics
⬅️ Clustering
⬅️ Principal Component Analysis (PCA)
⬅️ Bagging and Boosting techniques
⬅️ Linear regression
⬅️ Neural networks and more...


📂 Int Data Science Python Dash
🐱 GitHub-Repos

👉 @codeprogrammer

#Python #OpenCV #Automation #ML #AI #DEEPLEARNING #MACHINELEARNING #ComputerVision
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍4💯1🏆1
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼 

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg")  # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


more explain: https://hackmd.io/@husseinsheikho/imageprocessing

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
5👍1
#YOLOv8 #ComputerVision #TrafficManagement #Python #AI #SmartCity

Lesson: Detecting Traffic Congestion in Road Lanes with YOLOv8

This tutorial will guide you through building a system to monitor traffic on a highway from a video feed. We'll use YOLOv8 to detect vehicles and then define specific zones (lanes) to count the number of vehicles within them, determining if a lane is congested.

---

#Step 1: Project Setup and Dependencies

We need to install ultralytics for YOLOv8 and opencv-python for video and image processing. numpy is also essential for handling the coordinates of our detection zones.

pip install ultralytics opencv-python numpy

Create a Python script (e.g., traffic_monitor.py) and import the necessary libraries.

import cv2
import numpy as np
from ultralytics import YOLO

# Hashtags: #Setup #Python #OpenCV #YOLOv8


---

#Step 2: Model Loading and Lane Definition

We'll load a pre-trained YOLOv8 model, which is excellent at detecting common objects like cars, trucks, and buses. The most critical part of this step is defining the zones of interest (our lanes) as polygons on the video frame. You will need to adjust these coordinates to match the perspective of your specific video.

You will also need a video file, for example, traffic_video.mp4.

# Load a pre-trained YOLOv8 model (yolov8n.pt is small and fast)
model = YOLO('yolov8n.pt')

# Path to your video file
VIDEO_PATH = 'traffic_video.mp4'

# Define the polygons for two lanes.
# IMPORTANT: You MUST adjust these coordinates for your video's perspective.
# Each polygon is a numpy array of [x, y] coordinates.
LANE_1_POLYGON = np.array([[20, 400], [450, 400], [450, 250], [20, 250]], np.int32)
LANE_2_POLYGON = np.array([[500, 400], [980, 400], [980, 250], [500, 250]], np.int32)

# Define the congestion threshold. If vehicle count > this, the lane is congested.
CONGESTION_THRESHOLD = 10

# Hashtags: #Configuration #AIModel #SmartCity


---

#Step 3: Main Loop for Detection and Counting

This is the core of our program. We will loop through each frame of the video, run vehicle detection, and then check if the center of each detected vehicle falls inside our predefined lane polygons. We will keep a count for each lane.

cap = cv2.VideoCapture(VIDEO_PATH)

while cap.isOpened():
success, frame = cap.read()
if not success:
break

# Run YOLOv8 inference on the frame
results = model(frame)

# Initialize vehicle counts for each lane for the current frame
lane_1_count = 0
lane_2_count = 0

# Process detection results
for r in results:
for box in r.boxes:
# Check if the detected object is a vehicle
class_id = int(box.cls[0])
class_name = model.names[class_id]

if class_name in ['car', 'truck', 'bus', 'motorbike']:
# Get bounding box coordinates
x1, y1, x2, y2 = map(int, box.xyxy[0])

# Calculate the center point of the bounding box
center_x = (x1 + x2) // 2
center_y = (y1 + y2) // 2

# Check if the center point is inside Lane 1
if cv2.pointPolygonTest(LANE_1_POLYGON, (center_x, center_y), False) >= 0:
lane_1_count += 1

# Check if the center point is inside Lane 2
elif cv2.pointPolygonTest(LANE_2_POLYGON, (center_x, center_y), False) >= 0:
lane_2_count += 1

# Hashtags: #RealTime #ObjectDetection #VideoProcessing

(Note: The code below should be placed inside the while loop of Step 3)

---

#Step 4: Visualization and Displaying Results
1
After counting the vehicles, we need to visualize the results on the video frame. We will draw the lane polygons, display the vehicle count for each, and change the lane's color to red if it is considered congested based on our threshold.

# --- Visualization --- (This code continues inside the while loop)

# Draw the lane polygons on the frame
cv2.polylines(frame, [LANE_1_POLYGON], isClosed=True, color=(255, 255, 0), thickness=2)
cv2.polylines(frame, [LANE_2_POLYGON], isClosed=True, color=(255, 255, 0), thickness=2)

# Check for congestion and display status for Lane 1
if lane_1_count > CONGESTION_THRESHOLD:
status_1 = "CONGESTED"
color_1 = (0, 0, 255) # Red
else:
status_1 = "NORMAL"
color_1 = (0, 255, 0) # Green

cv2.putText(frame, f"Lane 1: {lane_1_count} ({status_1})", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, color_1, 2)

# Check for congestion and display status for Lane 2
if lane_2_count > CONGESTION_THRESHOLD:
status_2 = "CONGESTED"
color_2 = (0, 0, 255) # Red
else:
status_2 = "NORMAL"
color_2 = (0, 255, 0) # Green

cv2.putText(frame, f"Lane 2: {lane_2_count} ({status_2})", (530, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, color_2, 2)

# Display the frame with detections and status
cv2.imshow("Traffic Congestion Monitor", frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows()

# Hashtags: #DataVisualization #OpenCV #TrafficFlow


---

#Step 5: Results and Discussion

When you run the script, a video window will appear. You will see:
• Yellow polygons outlining the defined lanes.
• Text at the top indicating the number of vehicles in each lane and its status ("NORMAL" or "CONGESTED").
• The status text and its color will change in real-time based on the vehicle count exceeding the CONGESTION_THRESHOLD.

Discussion of Results:
Threshold is Key: The CONGESTION_THRESHOLD is the most important variable to tune. A value of 10 might be too high for a short lane or too low for a long one. It must be calibrated based on the specific camera view and what is considered "congested" for that road.
Polygon Accuracy: The system's accuracy is highly dependent on how well you define the LANE_POLYGON coordinates. They must accurately map to the lanes in the video, accounting for perspective.
Limitations: This method only measures vehicle density (number of cars in an area). It does not measure traffic flow (vehicle speed). A lane could have many cars moving quickly (high density, but not congested) or a few stopped cars (low density, but very congested).
Potential Improvements:
Object Tracking: Implement an object tracker (like DeepSORT or BoT-SORT) to assign a unique ID to each car. This would allow you to calculate the average speed of vehicles within each lane, providing a much more reliable measure of congestion.
Time-Based Analysis: Analyze data over time. A lane that is consistently above the threshold for more than a minute is a stronger indicator of a traffic jam than a brief spike in vehicle count.

#ProjectComplete #AIforCities #Transportation

━━━━━━━━━━━━━━━
By: @CodeProgrammer
1