The Big Book of Large Language Models by Damien Benveniste
✅ Chapters:
1⃣ Introduction
🔢 Language Models Before Transformers
🔢 Attention Is All You Need: The Original Transformer Architecture
🔢 A More Modern Approach To The Transformer Architecture
🔢 Multi-modal Large Language Models
🔢 Transformers Beyond Language Models
🔢 Non-Transformer Language Models
🔢 How LLMs Generate Text
🔢 From Words To Tokens
1⃣ 0⃣ Training LLMs to Follow Instructions
1⃣ 1⃣ Scaling Model Training
1⃣ 🔢 Fine-Tuning LLMs
1⃣ 🔢 Deploying LLMs
Read it: https://book.theaiedge.io/
Read it: https://book.theaiedge.io/
#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17❤4👎1
👨🏻💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.
#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35❤15👏1
Practical Deep Learning
A free course designed for people with some coding experience, who want to learn how to apply deep learning and machine learning to practical problems.
New!
Enroll Free: https://course.fast.ai/
A free course designed for people with some coding experience, who want to learn how to apply deep learning and machine learning to practical problems.
New!
Enroll Free: https://course.fast.ai/
#DeepLearning #MachineLearning #FreeCourse #CodingSkills #AI #ArtificialIntelligence #PracticalAI #TechEducation #LearnToCode #DataScience #NeuralNetworks #PythonProgramming #TechInnovation #SelfPacedLearning #FutureSkills
https://t.me/CodeProgrammer👩💻
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤5🔥3💯1
Introduction to Deep Learning.pdf
10.5 MB
Introduction to Deep Learning
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9