#ml #randomforest #pzad #dyakonov #syntheticrf #tricks #mlgems #oof
Понравился совет, как определить n_estimators для лесов, и аргументация, почему его не надо тюнить с HPT.
Оказывается, подрезание деревьев снижает калибровку.
Крутой трюк с подбором порогов для выравнивания распределений в "целочисленной регрессии" (у С. Семёнова это вообще вылилось в подзадачу ML). Кстати, а почему нету лесов, которые могут выдавать медиану в листьях вместо среднего?
OOF-прогнозы - тоже интересная техника, особенно для генерации новых признаков.
https://www.youtube.com/watch?v=sAcjGjMHduc&list=PLaRUeIuewv8CMFox0oEjlyePUhUmo-x0h&
Понравился совет, как определить n_estimators для лесов, и аргументация, почему его не надо тюнить с HPT.
Оказывается, подрезание деревьев снижает калибровку.
Крутой трюк с подбором порогов для выравнивания распределений в "целочисленной регрессии" (у С. Семёнова это вообще вылилось в подзадачу ML). Кстати, а почему нету лесов, которые могут выдавать медиану в листьях вместо среднего?
OOF-прогнозы - тоже интересная техника, особенно для генерации новых признаков.
https://www.youtube.com/watch?v=sAcjGjMHduc&list=PLaRUeIuewv8CMFox0oEjlyePUhUmo-x0h&
YouTube
ПЗАД2020. Лекция 24. Случайный лес
курс "Прикладные задачи анализа данных", ВМК МГУ, Дьяконов Александр (https://dyakonov.org/ag/)
страница курса: https://github.com/Dyakonov/PZAD/blob/master/README.md
страница курса: https://github.com/Dyakonov/PZAD/blob/master/README.md