Aspiring Data Science
371 subscribers
425 photos
11 videos
10 files
1.88K links
Заметки экономиста о программировании, прогнозировании и принятии решений, научном методе познания.
Контакт: @fingoldo

I call myself a data scientist because I know just enough math, economics & programming to be dangerous.
Download Telegram
#ml #cpu #inference #tflight #paddlepaddle #onnx #openvino #tvm

По итогу рекомендуют onnx runtime, ускорение прогнозов в среднем от 20% до 400%. TVM интересен поддержкой множества форматов и компиляцией моделек напрямую в системные .dll и .so файлы.

https://www.youtube.com/watch?v=FHt0QtqQpxE
#hardware #inference

"В рамках конференции Cloud Next на этой неделе компания Google представила новый специализированный ИИ-чип Ironwood. Это уже седьмое поколение ИИ-процессоров компании и первый TPU, оптимизированный для инференса — работы уже обученных ИИ-моделей. Процессор будет использоваться в Google Cloud и поставляться в системах двух конфигураций: серверах из 256 таких процессоров и кластеров из 9216 таких чипов.

Анонс Ironwood состоялся на фоне усиливающейся конкуренции в сегменте разработок проприетарных ИИ-ускорителей. Хотя Nvidia доминирует на этом рынке, свои технологические решения также продвигают Amazon и Microsoft. Первая разработала ИИ-процессоры Trainium, Inferentia и Graviton, которые используются в её облачной инфраструктуре AWS, а Microsoft применяет собственные ИИ-чипы Cobalt 100 в облачных инстансах Azure.

Ironwood обладает пиковой вычислительной производительностью 4614 Тфлопс или 4614 триллионов операций в секунду. Таким образом кластер из 9216 таких чипов предложит производительность в 42,5 Экзафлопс.

Каждый процессор оснащён 192 Гбайт выделенной оперативной памяти с пропускной способностью 7,4 Тбит/с. Также чип включает усовершенствованное специализированное ядро ​​SparseCore для обработки типов данных, распространённых в рабочих нагрузках «расширенного ранжирования» и «рекомендательных систем» (например, алгоритм, предлагающий одежду, которая может вам понравиться). Архитектура TPU оптимизирована для минимизации перемещения данных и задержек, что, по утверждению Google, приводит к значительной экономии энергии.

Компания планирует использовать Ironwood в своём модульном вычислительном кластере AI Hypercomputer в составе Google Cloud."

https://3dnews.ru/1121018/google-predstavila-svoy-samiy-moshchniy-iiprotsessor-ironwood-do-46-kvadrilliona-operatsiy-v-sekundu