share our #NeurIPS2019 paper on generating graphs (~5K nodes) with graph recurrent attention networks (GRAN). It scales much better and achieves SOTA performance and very impressive sample-quality.
https://arxiv.org/abs/1910.00760
Code: https://github.com/lrjconan/GRAN
https://arxiv.org/abs/1910.00760
Code: https://github.com/lrjconan/GRAN
A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models
https://arxiv.org/abs/1910.13148
#MachineLearning #neurips, #NeurIPS2019
✴️ @AI_Python_EN
https://arxiv.org/abs/1910.13148
#MachineLearning #neurips, #NeurIPS2019
✴️ @AI_Python_EN
"Differentiable Convex Optimization Layers"
CVXPY creates powerful new PyTorch and TensorFlow layers
Agrawal et al.: https://locuslab.github.io/2019-10-28-cvxpylayers/
#PyTorch #TensorFlow #NeurIPS2019
❇️ @AI_Python_EN
CVXPY creates powerful new PyTorch and TensorFlow layers
Agrawal et al.: https://locuslab.github.io/2019-10-28-cvxpylayers/
#PyTorch #TensorFlow #NeurIPS2019
❇️ @AI_Python_EN