Forwarded from Александр
нашел очень красивые lecture notes: https://archives.leni.sh/stanford/CS224w.pdf
Forwarded from 🇻 🇱 🇦 🇩
Без видео
Есть слайды:
https://web.stanford.edu/class/cs224w/slides/07-theory2.pdf
И доп чтение (статьи)
1 Identity-aware Graph Neural Networks
https://arxiv.org/pdf/2101.10320
2 Graph Neural Networks are More Powerful than We Think
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10447704
3 Counting Graph Substructures with Graph Neural Networks
https://openreview.net/pdf?id=qaJxPhkYtD
4 Position-aware Graph Neural Networks
https://arxiv.org/pdf/1906.04817
Есть слайды:
https://web.stanford.edu/class/cs224w/slides/07-theory2.pdf
И доп чтение (статьи)
1 Identity-aware Graph Neural Networks
https://arxiv.org/pdf/2101.10320
2 Graph Neural Networks are More Powerful than We Think
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10447704
3 Counting Graph Substructures with Graph Neural Networks
https://openreview.net/pdf?id=qaJxPhkYtD
4 Position-aware Graph Neural Networks
https://arxiv.org/pdf/1906.04817
Forwarded from Варим МЛ
Сегодня небольшой обзорчик на очередную книгу про LLM - AI Engineering от Чип Хуен. В комментах можно поделиться своими любимыми библиотеками и архитектурными паттернами
#Жека #llm #books
#Жека #llm #books
Telegraph
AI Engineering - обзор книги
Сколько копий сломано вокруг определения термина AI... В этой книге Чип Хуен делает ход конём - оказывается, AI engineering - это только про большие генеративные модели. Да и вообще это книга про LLM, хотя в паре месте и упоминаются мультимодальные и картиночные…
Forwarded from Dealer.AI
Про all-in на агентов.
Продолжаем наш "крестовый поход" в этот раз в стан агентов.
Из каждого утюга нонче идет,что 2025 - это год агентов. Как в опереФигаро агенты тут, агенты там, агенты здесь, здесь все Дюша, Стас... Простите .
Тут, кстати, пояснять будет полегче т.к. антропики запилили ИМО лучший тлдр по полочкам, что такое агенты (и не обязательно LLM-based), где их и когда применять и т.п. и т.д. И всем канальям манагерам, в т.ч. тем, кто продают борду очередную ИИ стратегию хорошо бы это почитать. Если тыtupoy и не умеешь переводить с англосакского на русский вот тебе перевод адаптация.
Прочел? И чтобы Дядя больше не слышал потом, что у тебя агентская система, ибо агентский может быть только договор. И если у тебя последовательность действий с LLM это ещё не значит, что у тебя агент, возможно это все еще LLM+workflows. Кстати, именно последнее всякие ребятки с компаний выдают за агентов. Ну а че, сверху партия спустила "пересесть везде на агентов" вот и называют любой pipeline, где есть LLM теперь агентами, и закрывают плашки КПЭ.
А у вас какие были корки на работе с агентами? Пишите в комментариях.
Продолжаем наш "крестовый поход" в этот раз в стан агентов.
Из каждого утюга нонче идет,что 2025 - это год агентов. Как в опере
Тут, кстати, пояснять будет полегче т.к. антропики запилили ИМО лучший тлдр по полочкам, что такое агенты (и не обязательно LLM-based), где их и когда применять и т.п. и т.д. И всем канальям манагерам, в т.ч. тем, кто продают борду очередную ИИ стратегию хорошо бы это почитать. Если ты
Прочел? И чтобы Дядя больше не слышал потом, что у тебя агентская система, ибо агентский может быть только договор. И если у тебя последовательность действий с LLM это ещё не значит, что у тебя агент, возможно это все еще LLM+workflows. Кстати, именно последнее всякие ребятки с компаний выдают за агентов. Ну а че, сверху партия спустила "пересесть везде на агентов" вот и называют любой pipeline, где есть LLM теперь агентами, и закрывают плашки КПЭ.
А у вас какие были корки на работе с агентами? Пишите в комментариях.
YouTube
Ilya Sutskever NeurIPS 2024 full talk
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.
Forwarded from ML for Value / Ваня Максимов
Закат классной модели
Все мы любим делать клевые ML-модели, которые несут пользу бизнесу, и катить их в прод. Но если дополнительно ничего не делать, то рано или поздно (скорее рано) наступает «закат» модели: она перестает нести доп метрики. Почему?
1. Развиваются другие куски ml-системы
Классика в прогнозе кучи временных рядов: сначала прогноз каждого из них неплох, а в сумме все оч грустно. Поэтому добавляют модель-нормировщика: она прогнозирует сумму рядов (допустим, продажи категории товаров) и нормирует индивидуальные модели. Со временем мы добавим в индивидуальные модели сезонность, тренды, промо - они и без нормировок в сумме по категории будут работать хорошо
2. Меняется среда, для душных distribution shift
Модели антифрода устаревают мгновенно: мошенники быстро подстраиваются под них. Рекомендательные системы бьет feedback loop. К моделям прайсингам и скидок люди привыкают и начинают покупать только по скидке. Примеров много)
3. Баги
Отвалилась часть событий на фронте, кто-то поменял структуру таблиц с данными, завели новый фича тоггл, который все поломал и тд
Так что делать?
Чтобы закат модели случился попозже и не внезапно, хорошо бы:
Настроить графики мониторинга и алерты на перформанс модели. И регулярно за ними следить! Они ведь тоже устаревают)
Раз в полгода проводить обратные АВ-тесты с отрывами моделей. Я регулярно нахожу что-то, что кажется незыблемо полезным, но на самом деле уже нет
Есть и третий путь. С комфортом устроиться на берегу моря или в уютном кресле и наблюдать за закатом ml-модели. Часто это неизбежно (и нормально!), так что иногда можно просто позволить этому случиться
P.S. На фотках с кайфом наблюдаю за закатами (и иногда рассветами) солнца и мл-моделей последний год
Все мы любим делать клевые ML-модели, которые несут пользу бизнесу, и катить их в прод. Но если дополнительно ничего не делать, то рано или поздно (скорее рано) наступает «закат» модели: она перестает нести доп метрики. Почему?
1. Развиваются другие куски ml-системы
Классика в прогнозе кучи временных рядов: сначала прогноз каждого из них неплох, а в сумме все оч грустно. Поэтому добавляют модель-нормировщика: она прогнозирует сумму рядов (допустим, продажи категории товаров) и нормирует индивидуальные модели. Со временем мы добавим в индивидуальные модели сезонность, тренды, промо - они и без нормировок в сумме по категории будут работать хорошо
2. Меняется среда, для душных distribution shift
Модели антифрода устаревают мгновенно: мошенники быстро подстраиваются под них. Рекомендательные системы бьет feedback loop. К моделям прайсингам и скидок люди привыкают и начинают покупать только по скидке. Примеров много)
3. Баги
Отвалилась часть событий на фронте, кто-то поменял структуру таблиц с данными, завели новый фича тоггл, который все поломал и тд
Так что делать?
Чтобы закат модели случился попозже и не внезапно, хорошо бы:
Настроить графики мониторинга и алерты на перформанс модели. И регулярно за ними следить! Они ведь тоже устаревают)
Раз в полгода проводить обратные АВ-тесты с отрывами моделей. Я регулярно нахожу что-то, что кажется незыблемо полезным, но на самом деле уже нет
Есть и третий путь. С комфортом устроиться на берегу моря или в уютном кресле и наблюдать за закатом ml-модели. Часто это неизбежно (и нормально!), так что иногда можно просто позволить этому случиться
P.S. На фотках с кайфом наблюдаю за закатами (и иногда рассветами) солнца и мл-моделей последний год
Forwarded from айти канал
pylock.toml — новый стандарт локфайлов в Python
Вчера был одобрен эпический PEP 751, который вводит стандартный формат локфайлов в Python. Несколько лет дизайна, итераций и обсуждений, почти тысяча лайков на Reddit у этой новости, в общем большое событие.
Если вы знаете, что такое локфайлы, то новость на этом заканчивается. Называться будет
Если не знаете, то lockfile -- это просто текстовый файл определенного формата с полным описанием вашего Python окружения. Грубо говоря, у Python проектов будет ожидаться
- В `pylock.toml` будут записаны все установленные пакеты, включая непрямые зависимости, с их точными версиями, для всех ОС сразу, со всеми вариациями дополнительных зависимостей и прочей технической информацией.
- Это очень полезно, потому что теперь у пользователей и участников проекта будет устанавливаться в точности одинаковое Python окружение (и с гораздо большей вероятностью успеха). В общем
- Чтобы у вас в проекте появился
Вчера был одобрен эпический PEP 751, который вводит стандартный формат локфайлов в Python. Несколько лет дизайна, итераций и обсуждений, почти тысяча лайков на Reddit у этой новости, в общем большое событие.
Если вы знаете, что такое локфайлы, то новость на этом заканчивается. Называться будет
pylock.toml, теперь ждем пока все инструменты постепенно на него переедут.Если не знаете, то lockfile -- это просто текстовый файл определенного формата с полным описанием вашего Python окружения. Грубо говоря, у Python проектов будет ожидаться
pylock.toml вместо requirement.txt. Детали:- В `pylock.toml` будут записаны все установленные пакеты, включая непрямые зависимости, с их точными версиями, для всех ОС сразу, со всеми вариациями дополнительных зависимостей и прочей технической информацией.
- Это очень полезно, потому что теперь у пользователей и участников проекта будет устанавливаться в точности одинаковое Python окружение (и с гораздо большей вероятностью успеха). В общем
pylock.toml сильно упрощает жизнь другим пользователям проекта, включая будущих вас :)- Чтобы у вас в проекте появился
pylock.toml, нужно будет пользоваться инструментами типа uv, а список прямых зависимостей писать в pyproject.toml вместо requirements.txt. На самом деле это рекомендуется делать уже сегодня. Просто пока uv порождает "нестандартный" uv.lock вместо "стандартного" pylock.toml, но это разработчики uv сами уже изменят в будущем.Python Enhancement Proposals (PEPs)
PEP 751 – A file format to record Python dependencies for installation reproducibility | peps.python.org
This PEP proposes a new file format for specifying dependencies to enable reproducible installation in a Python environment. The format is designed to be human-readable and machine-generated. Installers consuming the file should be able to calculate wha...
Forwarded from Ebout Data Science | Дима Савелко
Уничтожительный RoadMap по прохождению MLSD, или как пройти секцию ML System Design
Секция по ML System Design - это очень важная секция, она показывает вашу сеньорность. И чтобы получить большой и жирный оффер, то надо её пройти так, чтобы вас сразу звали на позицию Chief Data Scientist
И вот что нужно знать:
- Если вы с нуля, то нужно углубиться в MLSD, для этого советую прочитать первую главу книги "System Design. Машинное обучение. Подготовка к сложному интервью" - в ней рассказывают более подробно про каждый этап MLSD.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM