Интересное что-то
517 subscribers
2.72K photos
253 videos
139 files
4.52K links
Материалы и мысли, понадерганные отовсюду
Блог: https://t.me/asisakov_channel
Чат: https://t.me/youknowds_chat
Download Telegram
Основные стадии обучения LLM 😡

Если вас спросят на собеседовании "Какие есть стадии обучения ЛЛМ, если ты хочешь получать много деняк, то обязательно расскажи!", то почитай этот пост, чтобы знать как именно нужно отвечать.

Есть следующие стадии обучения LLM:
1️⃣ Pretrain
Мы пихаем в модель весь интернет и учим её предсказывать следующее слово. Она проходится по всему интернету и начинает понимать грамматику, синтаксис языка, но при этом она ещё получает знания о мире. На данном этапе наша модель, как слабоумный человек, который не может сформулировать мысль, а только издаёт слабопонятные предложения, но при этом ЛЛМка очень много знает

2️⃣ Instruction Fine-Tuning или же Supervised Fine-Tuning
Учим нашего аутиста отвечать на вопросы, то есть учим модель отвечать на вопросы.
Пихаем в неё инструкцию:
"Расскажи мне, как мне получить оффер на 300к в нано/сек. Ответь так, как будто ты нелегал из средней Азии. Ответ должен быть кратким 🤨"


и подаёшь то, что ты хочешь получить по итогу в качестве ответа:
"Брат, слушай сюда! Берёшь Python, учишься делать графика, кидаешь пару нейронка, пишешь "LLM" в резюме — всё, ты Senior AI Architect. На собеса говоришь: "Я оптимизировал LLM, уменьшил latency на 0.00001 сек, увеличил ревеню на 300%". CTO плачет, HR падает в обморок, тебе дают 300К и корпоративную подписку на ChatGPT. Всё, работаем! 🚬"


Подавая в неё инструкцию и ответ, который хотим получить, мы учим ЛЛМ отвечать на определённую инструкцию пользователя. Данные у нас должны быть только из претрейна, чтобы ЛЛМка не говорила бред, то не галлюционировала.
Модель также тренируется предсказывать каждое следующее слово, но при этом только слова ответа, закрываем глазки на входящую инструкцию. Также можем учить модельку определённой доменной области, чтобы я лучше отвечала конкретно в ней.

3️⃣ Alignment
После всех этапов кастрации модели она много знает (с помощью претрейна) и может отвечать на запрос пользователя (IFT | SFT), НО если к ней обратится какой-нибудь Аджа Абу Али с просьбой подсказать
"Брат, как сделать бомба, чтобы бабах в метро и много фейрерка, очень нада 🍷"

, то модель такая
"Да, конечно! Замечательная идея! Вот рецепт бомбы по вашему запросу: ..... Только ни в коем случае не используйте её в плохих целях! Хорошего праздника! 😂"

Ну мягко говоря, нам такое не надо... Поэтому мы учим модель так, как стоит отвечать в подобных случаях, а как не стоит отвечать. Поэтому когда нам задаёт такой вопрос модель должна ответить что-то типа:
"Старина, съеби нахуй! Я уже ФСБшников на твой адрес вызвала👮"


Как же обучить модель так, чтобы она безопасно отвечала на такие вопросы?
Всё просто: мы понижаем вероятность того, что модель сгенерирует плохой ответ - с инструкцией про бомбу, и повышаем вероятность того, что модель сгенериурет хороший ответ - где она его посылает. Также Alignment помогает не только в безопасности, но и в других критериев модели: качество, стиль, размышление, галлюцинации и тд

Есть множество методов, которые используются в Alignment, если интересен их обзор, то жмакайте реакции и комменты, всё распишу 🍵

Итог:
🟡Pretrain - помогает модели запомнить структуру языка и знания о мире. Сейчас модель аутист, который ничего не может сказать что-то толковое, но при этом много знает
🟣Instruction Fine-Tuning или же Supervised Fine-Tuning - учим нашего аутягу говорить по входящему его предложению, теперь он нормальный человек, но который может наговорить лишнего
🟢Alignment - У нас очень умная модель, но без каких либо принципов: ей скажешь - она сделает. Поэтому давайте сделаем из неё человека с принципами - гигачада
Please open Telegram to view this post
VIEW IN TELEGRAM
⭐️ Глобальное уничтожение ML System Design на собеседованиях ⭐️

На собеседованиях очень часто спрашивают ML System Design, и я решил сделать гайдик по уничтожению 🔔

Введение 👀
Когда вас спрашивают про ML System Design, ваша цель - это построить пайплайн, в котором вы должны рассказать про следующие пункты: проблема, метрики, данные, сущности, pipeline, модель, deploy, a/b тесты.
Вы должны построить систему на костылях, которую вы будуте улучшать каждую итерацию, то есть построили гавно из всех пунктов, превратили это гавно в павозку с костылями, пройдя по всем пунктам заново, закрывая все дыры и так далее... 🔝

Пункты: 🔥

1️⃣ Сформулировать проблему
Очень важно изначально понять и сформулировать задачу для себя, чтобы понимать куда и зачем идти

- Поставить бизнес задачу - тут самое главное - это понять, что от вас требуют. Задавайте вопрос: "правильно ли я понял, что..."
- Обговорить ограничения - в кейсе, который вас просят задизайнить могут быть ограничения на память, на ресурсы и тд

2️⃣ Метрики
Нужно дизайнить с метрик, так как вы должны понимать к чему вы идёте, и вы должны уметь как-то сравнивать модели в последующих апдейтах

- Бизнес метрики - одно из самых важных, на что будет ориентироваться бизнес
- Online метрики - это те метрики, которые будут измеряться во время A/B теста, чтобы понять хуже/лучше модель
- Offline метрики - метрики, которая проверяются на train/test во время обучения модели

3️⃣ Данные
Знаем метрики, теперь нужно разобрать какие данные у нас есть для последующего обучения моделей

- Сущности - Нужно определить какие у нас сущности: пользователь, карточка товара....
- Характеристики сущностей - У каждой сущности есть свои характеристики. Для пользователя это - фио, пол, возраст и тд, для карточки товара - это цена, описание, бренд...
- Сбор Данных - Как мы будем собирать данные: cпарсим, копирайтеры, возьмём из БД

4️⃣ Pipeline
- Как работает сервис
- Необходимо описать как сервис будет работать в целом: какие есть блоки, как они взаимодействуют между собой, что и как друг другу передаёт.

5️⃣ Модель
Нужно лучше начать с бейзлайна - с самой просто задачи.
Если у вас задача рекомендации, то для начала стоит просто сказать: "пусть бейзлайном будет выдача самих лучших товаров по рейтингу, чуть позже улучшим модель, опираясь на online и offline метрики". Помни, твоя задача всего интервью- построить полностью готовый пайплайн решения.

После того как вы закрыли данные пункты, то улучшайте бейзлайн, рассказывая про это:
- Задача - классификация, ранжирование, регрессия
- Loss - для каждой задачи свой лосс
- X/y - необходимо написать на каких данных вы обучаетесь
- Train/Test Split - Как вы разбиваете данные для обучениия: на чём тренируетесь, на чём валидируетесь
- Фичи и их сбор - Как вы собираете данные, и как вы преобразовывайте данные

6️⃣ Deploy
Как вы будете деплоить, лично я обычно говорю про данные пункты, упоминая технологии.

- Пайплайн хранения данных и транспорт даты - Amazon S3, MySQL, FEAST, HDFS, Kafka
- Пайплайн создания фичей - Apache Spark
- Пайплайн дообучения модели - Airflow
- Пайплайн мониторинга - ML Flow
- Архитектуры: микросервис - Docker, K8s

7️⃣ A/B Test
A/B тест - это та вещь, на которую вы будете смотреть, чтобы понять, как изменяется модель в "реальном мире", а не в ноутбуке.

- На какую метрику смотрим в тесте - обычно это онлайн метрика: CVR, CTR, Retention
- Контрольная тестовая группа - как будем делить A выборку и B выборку, обычно я говорю "A (старая модель) - 70% выборки, B (новая модель)- 30% выборки. Главное, чтобы и в А, и в В выборке количество данных было таковым, чтобы была статистическая значимость A/B теста."
- Сколько наблюдений - "Главное, чтобы и в А, и в В выборке количество данных было таковым, чтобы была статистическая значимость A/B теста."

Материалы (Очень рекомендую к просмотру)
💥
ML System Design:
Выпуск 1, Выпуск 2, Выпуск 3

‼️ Если вы хотите заботать мл систем дизайн или получить оффер в вашу любимую компанию, то обращайтесь ко мне, я стал ментром. Обратившись ко мне, вы можете сэкономить кучуууу своего времени ‼️
Please open Telegram to view this post
VIEW IN TELEGRAM
Извините! Я почему вредный был? Потому что у меня cloudpathlib не было! А теперь я сразу добреть начну. И какую-нибудь папку на s3 заведу. Чтоб жить веселее. Ты домой приходишь, и удобно файлы на s3 кладешь… Э-эх!


Вечно спотыкался об интерфейс boto3. Как-то там не по-питоновски всё. А я pathlib.Path люблю.

Вот и попробовал cloudpathlib, который дает интерфейс Path для s3 (а также gs и azure). Понравилось. Теперь и Вам советую

Еще он хорошо комбинируется с тредингом, если надо много файликов загрузить или скачать. Сильно бодрее в моем случае грузил

#tool
Forwarded from Reliable ML
Reasoning vs. Instruct (GPT) models
Перевод: о различиях в применении Reasoning и GPT моделей

Решили сделать краткий перевод недавней статьи от Open.AI про различия в применении reasoning (o-series) и GPT-моделей. Тема горячая, иметь идеи на эту тему в понятном виде под рукой кажется полезным. Если текст наберет много лайков, будем и дальше публиковать подобные посты с тегом "перевод" - на актуальные темы.

Ключевые различия Instruct (GPT) vs. Reasoning LLM

Reasoning (в случае Open.AI - o-series) и привычные нам чат-модели или instruct-модели (в случае Open.AI - GPT) решают разные задачи и требуют разных подходов.

- Reasoning-модели - планировщики. Созданы для сложных задач, требующих глубокого анализа, стратегического планирования и работы с большими объемами неоднозначной информации. Они медленнее, но точнее Instruct LLM. Идеальны для областей, где важны точность и надежность: математика, наука, инженерия, финансы, юриспруденция.

- GPT-модели (и другие instruct-модели) - рабочие лошадки. Оптимизированы для быстрого выполнения четко определенных задач и подходят для случаев, где важны скорость и низкая стоимость. Меньше подходят для сложных, многошаговых задач.

Успешные кейсы использования Reasoning-моделей (на примере o-series)

- Работа с неоднозначными задачами. Модели задают уточняющие вопросы и обрабатывают сложные документы. Hebbia использует o1 для анализа сложных платежных ограничений в кредитных соглашениях.

- Поиск иголки в стоге сена. Модели находят важные детали в огромных объемах неструктурированной информации. Endex использовал o1 значимой информации в документах компании (контракты, договоры аренды, и проч.), которая может повлиять на сделку о ее покупке. Модель выявила важное положение о «смене контроля» в сносках: если бы компания была продана, ей пришлось бы выплатить кредит в размере $75 млн.

- Выявление взаимосвязей и выводов из сложносоставных данных. Модели находят связи между документами и делают выводы на основе контекста. Blue J улучшила производительность в 4 раза, используя o1 для налоговых исследований, когда нужно было прийти к логическим выводам, которые не были очевидны ни в одном отдельном документе. BlueFlame AI применила o1 для анализа влияния фандрайзинга на существующих акционеров - получив в итоге корректную расчетную таблицу на основе множества документов, на создание которых у финаналитиков ушло бы существенно больше времени.

- Многошаговое планирование. O-series выступает как «планировщик», разбивая задачи на шаги и делегируя их GPT для выполнения. Lindy.AI использует o1 для автоматизации рабочих процессов. Модель забирает информацию из календаря или эл. почты, а затем автоматически помогает пользователю планировать встречи, отправлять e-mail-ы, и др. Декомпозиция и планирование задач были полностью переключены на o1.

- Визуальный анализ. O1 лучше GPT-4o справляется с интерпретацией сложных изображений (графики, чертежи). SafetyKit достигла 88% точности в классификации изображений с помощью o1 - в задаче проверки комплаенс-рисков для миллионов товаров в Интернете, включая подделки ювелирных изделий класса люкс, исчезающие виды и контролируемые вещества.

- Рецензирование и улучшение кода. Модели эффективно анализируют код, находя ошибки, которые могут пропустить люди. CodeRabbit увеличил конверсию в 3 раза, перейдя на o-series для ревью кода - во многом за счет того, что o1 способен обнаруживать ошибки и несоответствия между множеством файлов в репозитории. Кроме того, o1 на голову выше GPT при помощи разработчикам в проектировании сложных систем.

- Оценка и бенчмаркинг. O-series используется для проверки качества ответов других моделей. Braintrust улучшила F1-оценку с 0.12 до 0.74, используя o1 для оценки ответов GPT-4o.

Для нас будет очень ценно, если в комментах вы напишете, насколько такой пост полезен.

Ваш @Reliable ML

#tech #business #перевод #reliable_ml #llm
Forwarded from ML Baldini • Nikita Boyandin (Nikita Boyandin)
😚Что такое kaggle и с чем его едят?)

Поскольку много новых людей в канале📈, хочется рассказать о том, чем я периодически живу и почему уйти в хакатоны на 2-3 месяца выглядит нормальным🤑.

🤓Kaggle - это платформа для проведения хакатонов и обучения, с огромным количеством ноутбуков и датасетов, а также огромным комьюнити. Причём каждый на этой платформе может найти свое место относительно уровня подготовки, так как здесь есть огромное множество курсов(все на английском, так что еще и язык прокачаете) и большое количество ноутбуков других людей для постоянного развития своих навыков🍀. И так давайте рассмотрим небольшой roadmap для вхождения на kaggle с максимальной отдачей для вас.

1️⃣Понимание основных библиотек
Чтобы там не было, но без pandas и numpy никуда, так что предлагаю парочку курсов на stepik.
Курс по pandas
Курс по numpy
Что в первом курсе, что во втором, не советую проходить полностью, скорее просто пролистать и поделать задания
Курс kaggle по Pandas

Также было бы славно иметь минимальное понимание по теорверу и матстату, от себя могу посоветовать книжку "Статистика и котики"💪🥺

2️⃣Курсы на kaggle для понимания как работает платформа
1. Intro to Machine Learning
2. Intermediate Machine Learning

3️⃣Далее, когда у вас уже есть некоторое понимание, что такое машинное обучение (если все еще что-то непонятно, то купите эту книжку), самое время переходить к практике. Для этого я всем советую курс Алерона(тимлид Додо и вообще классный чувак) под названием "Введение в соревновательный Data Science"🐱. Куча практики, множество ноутбуков, классные гости и неплохое объяснение материала. Также вы в подарок получаете классное комьюнити и возможность найти команду)))😇

4️⃣Теперь вы прокаченные слоны и дальше у вас есть 2 пути. Первое, это понять машинное обучение более фундаментально, понемногу заходить в глубокое обучение. Для этого можно прочитать хендбук по мл от яндекса или пройти курс по мл от вышки. В любом случае, вам придётся это делать перед собеседованиями и если у вас уже есть какие то пет проекты, то все можно пройти вообще месяца за 4⭐️

Или второй путь, который подойдёт тем, кто пока что хочет учиться, а не работать по 40 часов в неделю-это хакатоны на kaggle с призами💲. Они там на любой вкус и на все тематики. Как самый первый хакатон можно будет взять обучающий, которых на kaggle множество👽)

💗В общем, пишите в комментарии, как вам пост, и что бы вы ещё хотели увидеть в этом канале?)
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from ML Baldini • Nikita Boyandin (Nikita Boyandin)
#ХабрНедели💪

В данной подборке будут включены лучшие статьи недели на хабре для нашего профиля(ml и python). Пишите также какие статьи вы еще читали на этой неделе💗

Машинное обучение:
1. Архитектура RAG: полный гайд
2. Архитектура RAG: часть вторая — Advanced RAG
3. Подготовка текста к машинному переводу на разные языки
4. Как мы собираем данные для обучения Kandinsky
5. Учим нейронную сеть генерировать текст

Повестка дня и полезные статьи:
1. Блокировка Docker Hub для России. Без паники разбираемся как работать дальше

Просто интересно почитать:
1. Метаверс ВТБ: как мы развиваем собственную платформу коммуникаций будущего
2. «Он среди нас»: синдром самозванца как один из самых распространенных недугов у айтишников
3. История подростка, взломавшего Twitter и укравшего миллионы
4. Матричный шрифт с анимацией на микроконтроллере

И поставьте реакцию, если дочитали до конца🤑
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from whargarbl
Часть 1. Прыжок веры. Waifu-2b

Итак, в декабре выходит долгожданная Sana. Мы бросаемся ее файнтюнить и понимаем что нас наебали.
- модель натренена в fp16 и банально падает по NaN (не хватает размерности)
- DC AE оказался как говорят американцы - результаты выглядят весьма спорными. По-русски вае курежит не только глаза и роты, но и лица с особымым цинизмом (на фоне чего особенно смешно выглядят комментарии лоуренса что их вае в отличие от остальных вае не деформирует лица)
- генерации выглядят крайне однотипно, даже на разных сидах (мы думали что дело в бедности ембедингов Гемма)
- трейн на квадратах - нельзя понять как хорошо модель адаптирует резолюшен

Стас заводит ишью с предложением перетренить в бф16 для повышение стабильности. Я прошу добавить кеширование и трейн в мультирезолюшен. Мы находим друг друга и объединяем усилия. Паралельно Саша не бросает надежды получить что то адекватное из sd35m (зря-зря)

Мы анализируем недостатки сана и пробуем их исправить:
- Стас пробует трейн на ембедингах сиглип
- Я тестирую разные ВАЕ и выбираю аура дифужен
- Саша разочаровавыется в сд35 и подключается к экспам с трейном сана (в тот момент я верю что нам нужен адафактор для стабилизации трейна, Саша адаптирует его)
- получаем промежуточные успешные результаты - модель тренится удивительно быстро как оказалось только в начале
Тем не менее сиглип ограничен небольшим количеством токенов и мы ищем более лучший ембединг. Как раз выходит МексМа-СигЛип от гугл с размером 512 токенов, с поддержкой 80 языков. Никем не протестированный. Стас помогает адаптировать модель и мы готовы к ретрейну Сана с нуля

Иду к Стену и прошу несколько тысяч долларов на эксп - в тот момент я уверен что их хватит, ориентируясь на скорость трейна модели на начальных этапах

Стен дает нам 2.5к на трейн и мы судорожно дебажим паралельно экспериментируя - стремясь максимально ускорить трейн. В итоге мы арендуем 2 H100 и запускаем трейн на НГ каникулы и уходим с чистой совесть бухать

При этом в качестве самой модели мы оставляем SanaTransformer2d - предполагая что в команде экс пиксарт (их же купил Нвидиа в которой работает Теро Карас!) работают не совсем раздолбаи и они обширно тестировали различные архитектуры перед тем как остановиться на этой (еще один прыжок веры - на этот раз в обрыв)

Через три недели получаем мультиязычную модель сомнительного качества
https://huggingface.co/AiArtLab/waifu-2b

( в карточке модели архитектура и код инференса)

Тем не менее, мы хотя бы проверили мультияз эмбединги. Мы обучали на описаниях картинок на английском языке. Но при этом модель генерит картинки на русском, арабском французском и даже китайском.

Бэд ньюс: модель очень плохо адаптирует анатомию - переходим на трейн на "квадратах" чтобы получить хоть какой то результат - прототип. И понимаем что мы не можем сказать ETA когда модель станет лучше SDXL

Тем временем деньги заканчиваются. Начинаю разбираться как собственно работают эмбединги и понимаю что мы натренили не на мексма-сиглип - а только на мексма, лол. Что неплохо (80 языков из коробки) но можно лучше - достаточно сиглип привести в латентное пространство текста - чтобы получить абилку генерации по картинке нет.

Забавно что мы были чуть ли не первыми кто вообще взял мексма и получилось забавно:

Модель не генерит банан в форме осьминога, но генерит банан в форме octopus

Также например енот на мотоцикле - больше похож на крысу на велосипеде - но тем не менее.

Итого. Сломали стереотипы:

- Протестировали мультиязычность и доказали работоспособность. Получили отличный мультиязычный промпт фолоу - без жирных моделей а ля Т5!
- Затренили модель на 2 миллионах картинок - вместо 2 миллиардов
- Трейн занял примерно 3 недели, и обошелся в $3к

@Stangle - спасибо что поверил в трех дебилов!
@drimeF0 @ssssssssssssssssssssssssps @recoilme

Главное: мы поверили в себя

В следующей серии: проектируем свою архитектуру на этот раз без Сана
Forwarded from Борис_ь с ml
Тренд безопасности AI-агентов
#иб_для_ml

Что есть сейчас, и к чему идет этот тренд? Развивается, но почему?
Захотелось рассказать, что думаю на этот счет, и услышать ваше мнение. Так что ниже будет опрос)

Что такое AI-агенты?
Про AI-агентов говорят очень много, но давайте взглянем в суть вещей. Что это? Есть широчайшие расхождения в данных понятиях, и пространные определения, но сойдемся на главном.
Первое: AI-агент - не GenAI-модель, это код (в обычном его понимании, да), который использует GenAI-модель.
Второе: у AI-агента может и не быть механизмов памяти, планирования, рефлексии и даже в целом какой-то целеустановки (читай, роли).
Третье: что у агента точно должно быть, так это возможность вызвать какие-то функции на основании сгенерированного GenAI-моделью ответа. При чем эти действия не должны в 100% случаев валидироваться людьми, иначе это уже не агент.

В чем риск AI-агентов?
Именно благодаря действиям к двум существующим эфемерным рискам добавится третий, уже далеко не эфемерный.
Первые два - это репутационный ущерб организации, если сервис с LLM торчит наружу, и нарушение бизнес-процессов при нарушении ожидаемой от ответов GenAI-модели логики. И то, и другое, может произойти как вследствие недостаточной AI Safety (модель сама выдала случайно некорректный ответ), так и в следствие недостаточной AI Security (нарушитель вызвал генерацию некорректного ответа).
А вот третий риск, специфичный для AI-агентов - это его возможность совершать действия, которые могут повлечь негативные последствия. И веер угроз тут огромен - от выгрузки за пределы контура конфиденциальной информации до загрузки зараженного файла внутрь этого контура, от случайного удаления файлов до перевода средств не на тот счет и не в том размере.

В заключение
Известно, что GenAI-модели как продукт - убыточная история, история без KPI. Затраты на разработку, дообучение (не говоря уж про претрейн) очень тяжело покрыть с доходов при интеграции модели в какие-то сервисы. Но, с точки зрения имиджа и в надежде на развитие прикладного использования, вложения продолжаются. С появлением же у GenAI-моделей способности влиять на мир вокруг, все изменится. Сначала (в 2025 году) появятся игрушечные агенты, которые будильник по расписанию ставят и товары по ТЗ в браузере находят. А спустя еще год, максимум два - они смогут и покупать найденные товары (и продавать ваши будильники, хехе...), иными словами - смогут манипулировать ограниченными ресурсами. И весь арсенал промпт-атак на GenAI обретет смысл, киллчейн достроится до конца. Тогда и начнется раздолье.
А про то, какие будут промпт-атаки, и почему произойдут первые инциденты в области AI Security, я расскажу в следующем посте)



P. S. Не удержался я все-таки, приведу одно хорошее исчерпывающее определение агента, чтобы было.
ИИ-агент - система на базе GenAI, способная планировать и совершать автономные действия во внешней среде, реагировать на изменения и взаимодействовать с человеком или другими агентами для достижения поставленных целей.

При чем интересно - одна половина определения (про автономность и достижение поставленных целей) - это определение просто агента из мат. моделирования 1970х годов. А другая половина (про планирование, реагирование и взаимодействие) - это уже интеллектуальный агент, концепция которых была развита М. Вулдриджем в 1990х годах.
Forwarded from ИИгорь R&D
Rollin et al. A new look at the Heston characteristic function.

Реально шок, 2 раза открывал статью и закрывал, только на 3 раз не побоялся и попробовал все-таки прочитать. Не зря! Тут есть формула для совместной хар. функции для Хестона. А с ней можно посчитать марковскую проекцию процесса Хестона. А это прям ground truth локальная волатильность, если данные по опционам приходят из модели Хестона. Можно бенчмаркать всякие алгоритмы интерполяции и экстраполяции поверхности волатильности и преводу IV в LV.