Интересное что-то
517 subscribers
2.72K photos
253 videos
139 files
4.52K links
Материалы и мысли, понадерганные отовсюду
Блог: https://t.me/asisakov_channel
Чат: https://t.me/youknowds_chat
Download Telegram
Forwarded from Neural Info
Мини-статья про регуляризацию с визуальным объяснением и сравнением L1 и L2.

Всем советую прочитать, возможно данная статья прояснит некоторые неочевидные моменты, которые обычно опускают.
Forwarded from Душный NLP
ToolkenGPT и Toolken+: расширение возможностей языковых моделей за счёт интеграции инструментов

Сегодня разбираем две статьи. Первая описывает парадигму обучения инструментов ToolkenGPT. Вторая представляет развитие этой концепции, предложенное Константином Яковлевым, Сергеем Николенко и Андреем Бутом из Яндекса.

ToolkenGPT: как научить модель напрямую вызывать внешние функции
В первой работе исследователи предложили представить каждый внешний инструмент в виде токена — toolken (represents each tool as a token) — и выучивать его эмбеддинг. Модель обучается работать с такими токенами так же, как с обычными текстовыми.

В результате работу модели можно условно разделить на две стадии:

1) режим “reasoning” — генерация происходит, как обычно, с той лишь разницей, что добавленные toolken тоже рассматриваются в качестве вероятных токенов на каждом шаге генерации;
2) режим “tool” — когда следующим предсказанным токеном оказался toolken. В этом случае вызывается соответствующий инструмент в режиме “few-shot”. После того как вызов осуществляется внешним инструментом, модель возвращает ответ и переходит обратно в режим “reasoning”.

Авторы показали применимость подхода для математических операций на GSM8K-XL и FuncQA. Также рассмотрели задачи knowledge-based QA и генерации плана.

Toolken+: ранжирование инструментов и отказ от неподходящих функций
Концепция Toolken+ решает две проблемы ToolkenGPT. Во-первых, ранее модель не учитывала документацию по инструментам и часто выбирала неподходящий инструмент. Во-вторых, модель иногда стремилась использовать инструмент там, где это не требовалось.

Toolken+ добавляет два улучшения:

1) Переранжирование нескольких выбранных инструментов. Модель сначала предлагает k вариантов, потом повторно оценивает и выбирает оптимальный.
2) Опцию “reject” для отказа от вызова инструмента. Модель может явно указать, что сейчас не стоит применять никакой инструмент, если вероятность подходящего вызова невысока.

Эти изменения позволяют минимизировать как ошибки ложноположительных срабатываний при вызове инструментов, так и ошибки неправильной классификации инструментов для ToolkenGPT, что позволяет улучшить робастность модели.

Результаты
Исследователи проверяли Toolken+ на математическом бенчмарке GSM8K, на бенчмарках VirtualHome и MetaTool. Они показали, что добавление переранжирования и опции "reject" улучшает качество конечных ответов. При этом в MetaTool требуется только одна функция для заданного запроса, поэтому опция "reject" не нужна — таким образом, замер служит как аблейшн реранжирования гипотез.

Расскажите в комментариях, что думаете о подходах ToolkenGPT и Toolken+.

Разбор подготовил
Андрей Бут
Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from addmeto (Grigory Bakunov)
Вот эта работа имеет все шансы стать куда более значимой, чем все нынешние "соры", выпущенные в последние полгода. Это система, в которой вы можете симулировать реальные физические процессы и визуализировать их. По сути используется физическая модель, где из текста строится не видео (как все уже привыкли), а моделируется 3д с учетом физики процессов и материалов. Слова тут вероятно лишние, посмотрите на картинки https://genesis-embodied-ai.github.io
Хайп NLP не обходит стороной и time series

Там уже во всю прикручивают LM и даже LLM. Цель - сделать универсальную модель, которую один раз предобучил, и она будет хорошо работать на ваших данных без дообучения. Ты ей исторические данные, а она тебе будущее. Такой сетап называют Zero-shot

Потыкал хайповую модель Chronos

Основная идея - минимальными усилиями сделать так, чтобы можно было учить обычные трансформеры из NLP. Ведь и тут и там по последовательности предсказывается следующее значение. Нужно лишь перейти от непрерывных к дискретным данным.

Собственно переход простой. Авторы просто нормализуют и затем квантуют все значения. Например, 4.5 -> 5, 6.3 -> 5, 7.4 -> 8

А дальше классика - собрать побольше данных. Ребята аугментировали имеющиеся датасеты (TSMixup) и нагенерировали синтетических (KernelSynth)

Чтобы получить предсказания - делаем несколько версий будущего (разница в них будет из-за вероятностного семплинга следующего токена) и усредняем

Из плюсов - реально неплохо работает, когда достаточно большой контекст
Из минусов - это довольно большой трансформер ~100млн параметров (но там есть и tiny версия)
Forwarded from commit history
Позавчера вернулся с NeurIPS, мне понравилось!

Я рассказывал о нашем агенте для решения issues в репозиториях. На базе только открытых моделей получилось выбить 40.6% на swe-bench verified, результат засабмитили месяц назад. Я построил выступление по нашему посту, который можно прочитать тут + добавил инфы о том, как собирали данные. Короткое описание блог поста можно прочитать у Саши, он делал критика для process и outcome supervision. А про данные: скоро выложим еще один блог пост и зарелизим сами данные, которые собрали, так что stay tuned как говорится!

Ниже прикрепляю небольшую пачку фото и видео материалов с нипса.
Forwarded from Start Career in DS
Собрали для вас курсы степика, которые могу пригодиться начинающим и продолжающим) Есть как бесплатные так и платные, но доступные по цене

🐍 Python
Поколение Python - первый курс из линейки по изучению питона с нуля с множеством задач для тренировки написания кода
Добрый, добрый Python - курс для начинающих и для тех, кто уже знаком с Python, но хотел бы повысить/проверить свой уровень
Программирование на Python - вводный курс по питону от Института биоинформатики
Python: основы и применение - курс по питону для продолжающих, тоже от Института биоинформатики


📊 SQL
Интерактивный тренажер по SQL - практика написания SQL-запросов с минимумом теории, сложность возрастает по мере прохождения курса
SQL База - основы SQL от Left Join
Основы SQL - обучение SQL с нуля на примере MySQL
Продвинутый SQL - сложные запросы, транзакции, тригеры и оконных функций в MySQL


⚛️ ML/DL
Deep Learning (семестр 1, осень 2024) и Deep Learning (семестр 2, осень 2024): бесплатный двухсеместровый курс по глубокому обучению от МФТИ
Машинное Обучение в Python - требуется только базовое знание Python, математика добавляется постепенно, поэтому курс подойдет для начинающих
Добрый, добрый ИИ от Сергея Балакирева - первые шаги в ML, нужны знания математики и Python
Нейронные сети и обработка текста - для тех, кто уже имеет базу в ML и хочет научиться применять нейронные сети для решения задач NLP


Math
Математика для всех от Савватеева - курс поможет разобраться в математической логике и механизмах работы математики
Ликбез по дискретной математике - обзорный курс по дискретной математике
Линейная алгебра - краткое изложение основ линейной алгебры
Теория вероятностей - базовыме понятия теории вероятностей, много примеров и задач
Основы статистики от Карпова - база в статистике, уже неоднократно писали про этот курс в канале
Добрая теория вероятностей от Балакирева - школьная база по теории вероятности

Ждём ваших ❤️ и 🔥! Делитесь в комментариях какие курсы проходили вы и можете порекомендовать 🧑‍🏫