Forwarded from Nikita Sushko
GitHub
GitHub - NirDiamant/RAG_Techniques: This repository showcases various advanced techniques for Retrieval-Augmented Generation (RAG)…
This repository showcases various advanced techniques for Retrieval-Augmented Generation (RAG) systems. RAG systems combine information retrieval with generative models to provide accurate and cont...
Forwarded from Machine learning Interview
💼 Обратное собеседование (reverse-interview) это список вопросов для соискателей.
Пункты не упорядочены и могут быть неприменимы к конкретной должности или виду работы. Вначале это был просто список вопросов, но со временем он стал включать ещё и те вещи, которых хотелось бы видеть больше, и «красные флажки», то есть вещи, которых хочется избегать. Ещё я обратил внимание, что многие люди, которых я собеседовал, не задавали эти вопросы, и, я думаю, это были упущенные возможности.
Разделы вопросов:
- Технологии
- Должность
- Команда
- Ваши будущие коллеги
- Компания
- Бизнес
- Удалённая работа
- Офисная работа
- Компенсация
- Больничный, декретный период, отпуск
📌 Вопросы
@machinelearning_interview
Пункты не упорядочены и могут быть неприменимы к конкретной должности или виду работы. Вначале это был просто список вопросов, но со временем он стал включать ещё и те вещи, которых хотелось бы видеть больше, и «красные флажки», то есть вещи, которых хочется избегать. Ещё я обратил внимание, что многие люди, которых я собеседовал, не задавали эти вопросы, и, я думаю, это были упущенные возможности.
Разделы вопросов:
- Технологии
- Должность
- Команда
- Ваши будущие коллеги
- Компания
- Бизнес
- Удалённая работа
- Офисная работа
- Компенсация
- Больничный, декретный период, отпуск
📌 Вопросы
@machinelearning_interview
Forwarded from Machine learning Interview
Собираетесь на собеседование на позицию Python Developer? Тогда обратите внимание на эту шпаргалку, где собраны ответы на более чем 100 вопросов, которые часто задают на интервью. Разработчики тщательно подготовили эти материалы, и уверены, что они помогут вам лучше подготовиться к вопросам.
Эти вопросы покрывают практически все темы Python + затрагивают азы Computer Science: алгоритмы, структуры данных и т.д.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Репозиторий GitHub "advice", в котором содержится обширная коллекция ссылок на ресурсы, предлагающие советы по различным аспектам поступления в аспирантуру, проведения исследований и жизни в аспирантуре, в основном в области информатики, NLP и ML.
Автор репозитория - Shaily Bhatt, аспирант первого года обучения в Институте языковых технологий CMU и бывший сотрудник NLU Group в Google Research (Индия).
Содержание:
Заявки в аспирантуру:
Исследования:
В репозитории также есть раздел "Список списков", в котором собраны ссылки на другие полезные ресурсы.
@ai_machinelearning_big_data
#AI #ML #Resources #Github #Awesome
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning Interview
This media is not supported in your browser
VIEW IN TELEGRAM
Этот веб-инструмент преобразует содержимое репозитория GitHub в форматированный текстовый файл для запросов Large Language Model (LLM).
Он упрощает процесс преобразования репозитория в удобные для LLM данные для генерации кода, документации, использования и др.
▪️Github
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning Interview
#курс #deeplearning #machinelearning #bigdata #ai
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from ML Advertising
Я одно время лидил команду VirtualSense по размещению рекламных билбордов в видео. Мы заменяли уже имеющихся билборды с подстройкой трехмерного положения и перспективы и размещали борды на ранее пустующих слотах. Поэтому, вспоминая прошлый опыт, сегодня хочу пройтись по 3D Computer Vision алгоритмом, с помощью которых решается такая задача.
Она формулируется, как сопоставление изображения с помощью ключевых точек. Задача сводится к поиску конкретного объекта на одном изображении с помощью другого, эталонного.
Для этого необходимы так называемые ключевые точки – характерные области изображения, которые помогают определить, насколько два объекта совпадают. Сопоставив между собой множество изображений сцены, мы сможем восстановить трёхмерную структуру объектов в ней. Но для этого важно иметь «хорошие» ключевые точки.
Также нужно ввести понятие дескрипторов - векторов, которые описывают точку и ее окружение. У разных ключевых точек они должны быть сильно различны, а у одинаковых – максимально схожи.
SIFT
Один из первых и самых известных алгоритмов для нахождения ключевых точек – это SIFT (Scale-Invariant Feature Transform). Его будем использовать, когда не требуется решить что-то сверхсложное и нужно быстро и легко найти ключевые точки.
▶️ Как работает?
Картинка сворачивается с фильтром (обычно гауссианой). Далее берут разность между двумя картинками с разным ядром. Потом на результатах находят экстремумы – области с наибольшей и наименьшей интенсивностью.
Далее, зная размер ключевой точки, мы можем посчитать дескрипторы и поворот точек. Для этого используем Histograms of oriented gradients (HoG). Для этого разбиваем область под ключевой точкой на 16 квадрантов, посчитаем градиенты по картинке, оставим только направления. Для каждого квадранта посчитаем гистограммы направлений, а потом сделаем конкатенацию гистограмм. Для поиска поворота ключевой точки найдём направление с наибольшим значением и будем считать, что это верх ключевой точки.
▶️ Почему SIFT может не справляться?
- Во-первых, сложные задачи, а порой даже довольно простые сцены, часто вызывают у него затруднения – для корректного срабатывания требуется большое пересечение между кадрами.
- Во-вторых, алгоритм не устойчив к изменению угла обзора. Даже если мы просто применим аффинное преобразование к изображению — качество упадёт.
- В-третьих, сложности возникают и с похожими паттернами: на одинаковом паттерне (обои, например) у разных ключевых точек будут одинаковые дескрипторы, из-за чего нормально сопоставить изображения не получится.
Зато SIFT быстрый, его легко запустить, и ему не нужен GPU. Поэтому он используется в качестве бейзлайн решения.
Она формулируется, как сопоставление изображения с помощью ключевых точек. Задача сводится к поиску конкретного объекта на одном изображении с помощью другого, эталонного.
Для этого необходимы так называемые ключевые точки – характерные области изображения, которые помогают определить, насколько два объекта совпадают. Сопоставив между собой множество изображений сцены, мы сможем восстановить трёхмерную структуру объектов в ней. Но для этого важно иметь «хорошие» ключевые точки.
Также нужно ввести понятие дескрипторов - векторов, которые описывают точку и ее окружение. У разных ключевых точек они должны быть сильно различны, а у одинаковых – максимально схожи.
SIFT
Один из первых и самых известных алгоритмов для нахождения ключевых точек – это SIFT (Scale-Invariant Feature Transform). Его будем использовать, когда не требуется решить что-то сверхсложное и нужно быстро и легко найти ключевые точки.
▶️ Как работает?
Картинка сворачивается с фильтром (обычно гауссианой). Далее берут разность между двумя картинками с разным ядром. Потом на результатах находят экстремумы – области с наибольшей и наименьшей интенсивностью.
Далее, зная размер ключевой точки, мы можем посчитать дескрипторы и поворот точек. Для этого используем Histograms of oriented gradients (HoG). Для этого разбиваем область под ключевой точкой на 16 квадрантов, посчитаем градиенты по картинке, оставим только направления. Для каждого квадранта посчитаем гистограммы направлений, а потом сделаем конкатенацию гистограмм. Для поиска поворота ключевой точки найдём направление с наибольшим значением и будем считать, что это верх ключевой точки.
▶️ Почему SIFT может не справляться?
- Во-первых, сложные задачи, а порой даже довольно простые сцены, часто вызывают у него затруднения – для корректного срабатывания требуется большое пересечение между кадрами.
- Во-вторых, алгоритм не устойчив к изменению угла обзора. Даже если мы просто применим аффинное преобразование к изображению — качество упадёт.
- В-третьих, сложности возникают и с похожими паттернами: на одинаковом паттерне (обои, например) у разных ключевых точек будут одинаковые дескрипторы, из-за чего нормально сопоставить изображения не получится.
Зато SIFT быстрый, его легко запустить, и ему не нужен GPU. Поэтому он используется в качестве бейзлайн решения.
LearnOpenCV – Learn OpenCV, PyTorch, Keras, Tensorflow with code, & tutorials
Histogram of Oriented Gradients explained using OpenCV
Histogram of Oriented Gradients (HOG) is a feature descriptor, used for object detection. Read the blog to learn the theory behind it and how it works.