„Chillin‘“ at Amazon
618 subscribers
27 photos
1 video
7 files
370 links
Amazonian SDE is sharing, 'cause sharing is caring 👨‍💻

note: I do not represent any of my employers in this channel
Download Telegram
#devops #book

Языке очень простой, написано интересно, читается легко

Прочитал первые 150 страниц взахлёб
The DevOps Handbook (2016)
Авторы: Gene Kim, Jez Humble, Patric Debois, John Willis
Количество страниц: 600

Эффективное управление технологиями имеет решающее значение для конкурентоспособности бизнеса. На протяжении десятилетий технологические лидеры пытались найти баланс между гибкостью, надежностью и безопасностью. Последствия возможных сбоев еще никогда не были столь значительными - например, утечка данных о держателях карт или временная недоступность необходимого тысячам людей сервиса. В книге рассказывается, как объединять управление продуктами, разработку, контроль качества, ИТ-операции и информационную безопасность, чтобы повысить эффективность вашей компании и добиться успеха на рынке.

Достоинства:
Небольшой объем;
Практикоориентированность.

Недостатки:
Не замечено.

Скачать книгу

#english #book #advanced
Forwarded from Хабр
PostgreSQL Antipatterns: убираем медленные и ненужные сортировки

Разбираемся, когда сортировка в запросе точно не нужна и несёт с собой потерю производительности, когда от неё можно относительно дёшево избавиться, а когда сделать из нескольких — одну.
#gzip #compression

Bandwidth optimization

Web servers use gzip to reduce the total amount of data transferred to clients. When a browser with gzip support sends a request, it adds “gzip” to its Accept-Encoding header. When the web server receives the request, it generates the response as normal, then checks the Accept-Encoding header to determine how to encode the response. If the server supports gzip, it uses gzip to compress each resource. It then delivers the compressed copies of each resource with an added Content-Encoding header, specifying that the resource is encoded using gzip. The browser then decompresses the content into its original uncompressed version before rendering it to the user.

However, this comes at a cost. Compression is a CPU-intensive process, and the more you compress a file, the longer it takes. Because of this, gzip offers a range of compression levels from 1 to 9; 1 offers the fastest compression speed but at a lower ratio, and 9 offers the highest compression ratio but at a lower speed. The gzip application uses level 6 by default, favoring higher compression over speed. Nginx, on the other hand, uses level 1, favoring higher speeds over file size savings.

https://www.pingdom.com/blog/can-gzip-compression-really-improve-web-performance/
#python

This article series is a guide to modern Python tooling with a focus on simplicity and minimalism.1 It walks you through the creation of a complete and up-to-date Python project structure, with unit tests, static analysis, type-checking, documentation, and continuous integration and delivery.

Here is a list of the articles in this series:

Chapter 1: Setup (this article)
Chapter 2: Testing
Chapter 3: Linting
Chapter 4: Typing
Chapter 5: Documentation
Chapter 6: CI/CD

https://cjolowicz.github.io/posts/hypermodern-python-01-setup/
#go #goroutines

Go uses goroutines while a language like Java uses threads.

The creation of a goroutine does not require much memory - only 2kB of stack space. They grow by allocating and freeing heap storage as required. Threads on the other hand start out at 1Mb (500 times more), along with a region of memory called a guard page that acts as a guard between one thread’s memory and another.

A server handling incoming requests can therefore create one goroutine per request without a problem, but one thread per request will eventually lead to the dreaded OutOfMemoryError. This isn’t limited to Java - any language that uses OS threads as the primary means of concurrency will face this issue.

Threads have significant setup and teardown costs because it has to request resources from the OS and return it once its done. The workaround to this problem is to maintain a pool of threads. In contrast, goroutines are created and destroyed by the runtime and those operations are pretty cheap. The language doesn’t support manual management of goroutines.

https://blog.nindalf.com/posts/how-goroutines-work/
#DB #Sharding
I am currently reading a lot about systems design for distributed systems. Data management is one of the most complex parts (at least for me, a person, who did not work with it much).

I looked through different "non-distributed" terms like indexing, views, materialised views. The other part is about partitilning/sharding,data replication, leader election algorithms, and how all that correlates with CAP theorem. One should carefully choose between relational and non-relational DBs.

In this article, it is written very well about scaling and sharding for relational DBs.

I highly recommend this, if you also struggle with the concept of Sharding for Relational DBs


Sharding with Amazon Relational Database Service | AWS Database Blog
https://aws.amazon.com/blogs/database/sharding-with-amazon-relational-database-service/
#LoadBalancer #L4 #L7

“L4 vs L7 Load Balancing” by Mohak Puri https://link.medium.com/k7BQvsUHMab