Задача о "многоруком бандите" (часть 1)
Задача является модельной для понимания конфликта между exploitation (применение, эксплуатация) и exploration (изучение, исследование).
Читать дальше...
Задача является модельной для понимания конфликта между exploitation (применение, эксплуатация) и exploration (изучение, исследование).
Читать дальше...
Задача о "многоруком бандите" (часть 2)
Продолжим разбираться с многоруким бандитом. Разберем способ оценки математического ожидания в случае когда распределение случайной величины меняется со временем, а также посмотрим как влияет на жадную стратегию выбор начальной оценки математического ожидания награды.
Читать дальше...
Продолжим разбираться с многоруким бандитом. Разберем способ оценки математического ожидания в случае когда распределение случайной величины меняется со временем, а также посмотрим как влияет на жадную стратегию выбор начальной оценки математического ожидания награды.
Читать дальше...
Сверточная нейронная сеть OverFeat
OverFeat - модель сверточной нейронной сети, описанная в [1], которая предназначена для того, чтобы одновременно (т.е. одной сетью) решать три задачи: детектировать объект, классифицировать его и уточнять положение на снимке (detection, recognition, and localization).
Читать дальше...
OverFeat - модель сверточной нейронной сети, описанная в [1], которая предназначена для того, чтобы одновременно (т.е. одной сетью) решать три задачи: детектировать объект, классифицировать его и уточнять положение на снимке (detection, recognition, and localization).
Читать дальше...
👍1
Задача о "многоруком бандите" (часть 3)
Разберем еще одну стратегию решения задачи о "многоруком бандите".
Читать дальше...
Разберем еще одну стратегию решения задачи о "многоруком бандите".
Читать дальше...
Spatial Pyramid Pooling структура в свёрточной нейронной сети
Любая свёрточная нейронная сеть, применяемая для классификации объектов, структурно легко разделяется на две части. Первая состоит из свёрточных (convolution) и объединяющих (pooling) слоёв (сюда же все нелинейности, LRN, batch normalization и т.п.) и по исходной картинке формирует трёхмерную матрицу особенностей (features). Вторая часть сети является классификатором, который, взяв набор особенностей, выдаёт класс объекта на изображении (вернее вектор sofmax с вероятностями для каждого класса).
Статья [1] предлагает использовать spatial pyramid pooling слой между свёрточной частью и классификатором, чтобы иметь возможность классифицировать изображения произвольных размеров (в разумных пределах).
Читать дальше...
Любая свёрточная нейронная сеть, применяемая для классификации объектов, структурно легко разделяется на две части. Первая состоит из свёрточных (convolution) и объединяющих (pooling) слоёв (сюда же все нелинейности, LRN, batch normalization и т.п.) и по исходной картинке формирует трёхмерную матрицу особенностей (features). Вторая часть сети является классификатором, который, взяв набор особенностей, выдаёт класс объекта на изображении (вернее вектор sofmax с вероятностями для каждого класса).
Статья [1] предлагает использовать spatial pyramid pooling слой между свёрточной частью и классификатором, чтобы иметь возможность классифицировать изображения произвольных размеров (в разумных пределах).
Читать дальше...
Выделения объектов для семантической сегментации при помощи "состязательного стирания".
Задача семантической сегментации изображения заключается в том, чтобы назначить каждому пикселю этого изображения некоторый класс из заранее заданных. Например, определить какие пиксели на изображении относятся к человеку, какие к сидящему у этого человека на коленях коту, а какие к некоему заднику (background) и не могут быть классифицированы. Современный подход к решению этой задачи, как собственно и многих других, заключается в применении свёрточных нейронных сетей. Этот подход показывает прекрасные результаты. Проблема, однако, как и всегда в случае применения нейронных сетей заключается в необходимости получить значительные объемы, размеченных для тренировки, данных. При этом в случае семантической сегментации, трудоёмкость задачи разметки крайне высока. Потому что для каждого изображения надо сформировать попиксельную маску классов.
Читать дальше...
Задача семантической сегментации изображения заключается в том, чтобы назначить каждому пикселю этого изображения некоторый класс из заранее заданных. Например, определить какие пиксели на изображении относятся к человеку, какие к сидящему у этого человека на коленях коту, а какие к некоему заднику (background) и не могут быть классифицированы. Современный подход к решению этой задачи, как собственно и многих других, заключается в применении свёрточных нейронных сетей. Этот подход показывает прекрасные результаты. Проблема, однако, как и всегда в случае применения нейронных сетей заключается в необходимости получить значительные объемы, размеченных для тренировки, данных. При этом в случае семантической сегментации, трудоёмкость задачи разметки крайне высока. Потому что для каждого изображения надо сформировать попиксельную маску классов.
Читать дальше...