ПРОСТОЙ И ПОНЯТНЫЙ МЕТОД ОЦЕНКИ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ AI
Полагаю, что из-за обилия гиперссылок читать мои посты не просто.
Однако, ничего не могу поделать, - стремлюсь делиться с вами встречающимися мне не сильно известными источниками, высказывающими оригинальные и ценные мысли.
Делать как на большинстве каналов – давать в каждом посте единственный источник (речь о тематических постах, а не про обзоры ссылок) – мне крайне сложно. Источников, исчерпывающе раскрывающих интересные мне темы, не много.
Тем приятней представить вам один из таких источников – блог моего старого коллеги по IBM Ирвинга Владавски-Бергера, 37 лет отвечавшего в компании за поиск прорывных технологий будущего.
Мне очень понравился его пост о простом и понятном методе оценки экономической эффективности AI – оценивать, насколько внедрение AI сокращает косты (издержки).
Пост среднедлинный (7 тыс. символов) и, подобно моим постам, включает аж 20 гиперссылок. Зато мне теперь достаточно дать всего одну 😊
Пересказывать этот пост я не буду – только испорчу. Из уже отжатого внятного и весьма умного текста, как из песни, слова не выкинуть.
Лишь посоветую вам обратить внимание на следующие важные мысли:
1) Машинный интеллект является, по своей сути, технологией прогнозирования, поэтому экономический сдвиг будет сосредоточен вокруг снижения стоимости прогнозов.
2) Первым магистральными применениями AI уже стало снижение стоимости и улучшение качества индустриальных решений, целиком завязанных на прогнозах – погода, персональный маркетинг, пополнение запасов и т.п.
3) Второй очередью, как это уже было для арифметических, коммуникационных и поисковых компьютерных решений, прогнозные решения станут (и уже становятся) основой все новых и новых приложений для самых разнообразных бытовых и персональных применений.
4) Третьей (и самой главной) очередью пойдут (и к этому уже подбираются)приложения для принятия решений.
5) Принятие решений включает 2 элемента: прогнозирование (в чем AI хорош) и суждение (в чем AI крайне слаб и вряд ли когда-либо будет хорош). И поэтому для принятия решений нужно научиться использовать кентавров из машинного и человеческого интеллекта. А те люди, которые будут эффективно работать в составе таких кентавров, будут обладать самым ценным и востребованным практическим навыком будущего – имение делать правильные суждения на основании прогнозов AI.
#AI #Экономика
Полагаю, что из-за обилия гиперссылок читать мои посты не просто.
Однако, ничего не могу поделать, - стремлюсь делиться с вами встречающимися мне не сильно известными источниками, высказывающими оригинальные и ценные мысли.
Делать как на большинстве каналов – давать в каждом посте единственный источник (речь о тематических постах, а не про обзоры ссылок) – мне крайне сложно. Источников, исчерпывающе раскрывающих интересные мне темы, не много.
Тем приятней представить вам один из таких источников – блог моего старого коллеги по IBM Ирвинга Владавски-Бергера, 37 лет отвечавшего в компании за поиск прорывных технологий будущего.
Мне очень понравился его пост о простом и понятном методе оценки экономической эффективности AI – оценивать, насколько внедрение AI сокращает косты (издержки).
Пост среднедлинный (7 тыс. символов) и, подобно моим постам, включает аж 20 гиперссылок. Зато мне теперь достаточно дать всего одну 😊
Пересказывать этот пост я не буду – только испорчу. Из уже отжатого внятного и весьма умного текста, как из песни, слова не выкинуть.
Лишь посоветую вам обратить внимание на следующие важные мысли:
1) Машинный интеллект является, по своей сути, технологией прогнозирования, поэтому экономический сдвиг будет сосредоточен вокруг снижения стоимости прогнозов.
2) Первым магистральными применениями AI уже стало снижение стоимости и улучшение качества индустриальных решений, целиком завязанных на прогнозах – погода, персональный маркетинг, пополнение запасов и т.п.
3) Второй очередью, как это уже было для арифметических, коммуникационных и поисковых компьютерных решений, прогнозные решения станут (и уже становятся) основой все новых и новых приложений для самых разнообразных бытовых и персональных применений.
4) Третьей (и самой главной) очередью пойдут (и к этому уже подбираются)приложения для принятия решений.
5) Принятие решений включает 2 элемента: прогнозирование (в чем AI хорош) и суждение (в чем AI крайне слаб и вряд ли когда-либо будет хорош). И поэтому для принятия решений нужно научиться использовать кентавров из машинного и человеческого интеллекта. А те люди, которые будут эффективно работать в составе таких кентавров, будут обладать самым ценным и востребованным практическим навыком будущего – имение делать правильные суждения на основании прогнозов AI.
#AI #Экономика
Irving Wladawsky-Berger
The Simple, Economic Value of Artificial Intelligence
I recently attended a very interesting talk, - Exploring the Impact of Artificial Intelligence: Prediction versus Judgment, - by University of Toronto professor Avi Goldfarb. The talk was based on recent research conducted with his UoT colleagues Ajay Agrawal…
КАК СТАТЬ БОЛЕЕ ПРОДУКТИВНЫМ И ЭФФЕКТИВНЫМ С ПОМОЩЬЮ AI-ИНСТРУМЕНТОВ
ℹ️
— Главная задача экономики – повышение производительности.
— Существующий подход в развитии AI – создание интеллектуальных автоматов – заменителей человека.
— Этот подход не способен кардинально решить главную задачу экономики, т.к. в большинстве профессий задач, доступных для полной автоматизации, меньшинство.
— Никому не нужен просто заменитель человека, - нужны новые ВЫСОКОПРОИЗВОДИТЕЛЬНЫЕ ВЕРСИИ ЛЮДЕЙ
▶️
— Вместо усовершенствования интеллектуальных автоматов для замены человека, предлагается направить развитие AI на разработку усовершенствованных личностей, способных выполнять свои функции с производительностью, в разы превышающей нынешнюю.
— Ключевым элементом такого альтернативного подхода должен стать «Рекомендательный ассистент»:
✔️ анализирующий деятельность человека при решении конкретных задач
✔️ и вырабатывающий рекомендации человеку, как повысить его производительность.
— Процесс организации ЦИФРОВОЙ ПОМОЩИ прост:
✔️ определение атрибутов, повышающих производительность (которые нужно усилить), и атрибутов, снижающих производительность (их нужно ослабить). Другими слова, использовать технологию НЕ для создания «ЛУЧШЕГО ИНТЕЛЛЕКТУАЛЬНОГО АГЕНТА», а для создания «УЛУЧШЕННОГО СЕБЯ» - улучшенного варианта собственной личности.
1️⃣ Носимые гаджеты и приложения для мобильных устройств, способные строить «количественные самоотчеты» о здоровье, можно настроить на оценку умственной готовности и внимания при выполнении интеллектуальной деятельности.
2️⃣ Анализаторы эффективности действий человека по выполнению персональных KPI можно строить при наличии Больших данных о предыдущем выполнении тех же функций многими людьми.
3️⃣ В долгосрочной перспективе, детальные данные интроспекции и их аналитика будут определять необходимые ингредиенты для повышения личной эффективности и производительности, как на работе, так и вне ее.
Бизнес кейс прост и понятен: хорошо управляемые человеком множество его усовершенствованных личностей на порядок превзойдут в эффективности и производительности обычную среднюю личность, деятельность которой автоматизирована интеллектуальными агентами.
🔀
✔️ Здесь анализ темы на 5-15 мин чтения
✔️ Здесь оригинальное изложение идеи ее автором (тоже на 5-15 мин)
✔️ Здесь работы Нобелевского лауреата Дэниела Канемана по определению когнитивных предубеждений, устанавливающих четкие рамки для проектирования «цифровых себя».
✔️ Здесь книга Марвина Мински «Общество разума», описывающая дорожную карту усовершенствования конкретных «модулей ума», имеющих лучшие шансы цифрового улучшения.
Работы Канемана и Мински показывают - «усовершенствованные личности» могут экспоненциально повысить индивидуальную производительность труда.
#AI #DataScience #BigData #Экономика #Производительность
ℹ️
Существующее направление развития AI – это УСТАРЕВШИЙ ПОДХОД к решение НЕ САМОЙ АКТУАЛЬНОЙ ЗАДАЧИ
— Главная задача экономики – повышение производительности.
— Существующий подход в развитии AI – создание интеллектуальных автоматов – заменителей человека.
— Этот подход не способен кардинально решить главную задачу экономики, т.к. в большинстве профессий задач, доступных для полной автоматизации, меньшинство.
— Никому не нужен просто заменитель человека, - нужны новые ВЫСОКОПРОИЗВОДИТЕЛЬНЫЕ ВЕРСИИ ЛЮДЕЙ
▶️
Альтернативный подход предлагает сменить фокус в разработке AI с создания ЦИФРОВЫХ ПОМОЩЬНИКОВ на создание ЦИФРОВОЙ ПОМОЩИ. Иными словами, пойти по пути развития Виртуальной реальности в направлении Дополненной реальности и превратить Искусственный интеллект в средство Дополнительной интроспекции
— Вместо усовершенствования интеллектуальных автоматов для замены человека, предлагается направить развитие AI на разработку усовершенствованных личностей, способных выполнять свои функции с производительностью, в разы превышающей нынешнюю.
— Ключевым элементом такого альтернативного подхода должен стать «Рекомендательный ассистент»:
✔️ анализирующий деятельность человека при решении конкретных задач
✔️ и вырабатывающий рекомендации человеку, как повысить его производительность.
— Процесс организации ЦИФРОВОЙ ПОМОЩИ прост:
✔️ определение атрибутов, повышающих производительность (которые нужно усилить), и атрибутов, снижающих производительность (их нужно ослабить). Другими слова, использовать технологию НЕ для создания «ЛУЧШЕГО ИНТЕЛЛЕКТУАЛЬНОГО АГЕНТА», а для создания «УЛУЧШЕННОГО СЕБЯ» - улучшенного варианта собственной личности.
1️⃣ Носимые гаджеты и приложения для мобильных устройств, способные строить «количественные самоотчеты» о здоровье, можно настроить на оценку умственной готовности и внимания при выполнении интеллектуальной деятельности.
2️⃣ Анализаторы эффективности действий человека по выполнению персональных KPI можно строить при наличии Больших данных о предыдущем выполнении тех же функций многими людьми.
3️⃣ В долгосрочной перспективе, детальные данные интроспекции и их аналитика будут определять необходимые ингредиенты для повышения личной эффективности и производительности, как на работе, так и вне ее.
Бизнес кейс прост и понятен: хорошо управляемые человеком множество его усовершенствованных личностей на порядок превзойдут в эффективности и производительности обычную среднюю личность, деятельность которой автоматизирована интеллектуальными агентами.
🔀
Прочесть обо всем этом
✔️ Здесь анализ темы на 5-15 мин чтения
✔️ Здесь оригинальное изложение идеи ее автором (тоже на 5-15 мин)
✔️ Здесь работы Нобелевского лауреата Дэниела Канемана по определению когнитивных предубеждений, устанавливающих четкие рамки для проектирования «цифровых себя».
✔️ Здесь книга Марвина Мински «Общество разума», описывающая дорожную карту усовершенствования конкретных «модулей ума», имеющих лучшие шансы цифрового улучшения.
Работы Канемана и Мински показывают - «усовершенствованные личности» могут экспоненциально повысить индивидуальную производительность труда.
#AI #DataScience #BigData #Экономика #Производительность
Irving Wladawsky-Berger
Become a More Productive, Empathetic, Creative Person With the Help of AI-Based Tools
Despite dramatic advances in technology, most of the world’s economies have been stuck in a long period of slow growth and slow productivity. This is one of the most serious challenges in our 21st century economy. Opinions abound, but there’s...