Малоизвестное интересное
68.8K subscribers
131 photos
2 videos
11 files
1.84K links
Авторский взгляд через призму новейших исследований на наше понимание реальности, человеческой сущности и того, как ИИ меняет их.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
ЗАОБЛАЧНЫЕ ТЕХНОЛОГИИ ИЗМЕНЯТ МИР

Прогнозов о революционных IT технологиях будущего хоть отбавляй. И цена им ноль. Ведь ни одна из IT технологий, революционизировавших сегодняшний мир (смартфоны, облака, большие данные, интернет вещей, глубинное обучение и т.д.) даже не была известна 25 лет назад. И через 25 лет будет то же самое.
Однако, тренды можно прогнозировать даже на 25 летнем горизонте. И потому я попробую, на основании анализа трендов, назвать, возможно, самую революционную IT технологию будущего.
О ней сегодня еще не пишут статей и не обсуждают на конференциях. Но она уже придумана и имеет большие шансы перевернуть будущий мир IT технологий, как это сделали в последнее десятилетие облачные технологии.
Облака – это не просто модно и перспективно. Это сотни миллиардов долларов бюджетов на IT-инфраструктуру. Но всему этому может прийти конец, т.к. облака – это тренд на централизацию и закрытость. А доминирующий тренд в мире (по крайней мере, как это видится из 2017) - обратный: децентрализация и открытость
Что будет, если идея децентрализации и открытости (плодом которой является блокчейн) победит облака в будущем мире хранения информации?
Тогда и появятся заоблачные технологии и архитектуры, первую из которых под названием RAIN (в смысле, что из облаков получается дождь) только что придумали четверо совсем молодых гиков (и я бы даже сказал, - гроков – о чем дальше), которые собираются впервые рассказать миру об этом в сентябре на международной конференции в Лионе.
Альтернативная облачной, архитектура хранения данных RAIN является распределенной и децентрализованной, а также превосходит облачные архитектуры по следующим характеристикам:
— конфиденциальность,
— безопасность,
— масштабируемость,
— устойчивость,
— эффективность (цена/качество для пользователя)
— надежность
Ко всему прочему, это архитектура с открытым исходным кодом, а сама система хранения не будет иметь одного владельца, а будет принадлежать всем ее пользователям.
И последний по счету, но не по значению, фактор.
— энергозатраты современных датаценторов мира – это почти 500 тераватт-часов (только 5 стран в мире потребляют больше этого);
— архитектура RAIN будет экономить примерно половину этой электроэнергии.
- - - - -
Говоря об авторах архитектуры RAIN, я назвал их гроками. Есть такое «марсианское» слово, обозначающее тех, кто способен не просто понимать, а грокать.
Этимология слова понимать – это поймать (уловить) смысл мысли, «брошенной» вам кем-то со стороны.
Грокать – это больше чем поймать смысл (как поймал, так можно и выронить, потерять и т.д.).
Грок – это тот, кто умеет «переваривать» и превращать новые смыслы в часть себя, делать их частью своей жизни.
Такими диджитал гроками мне видятся авторы архитектуры RAIN.
И для таких диджитал гроков пишет на авторском канале @groks Илья Пестов — о технологических трендах и маркетинге (отчёты, данные, графики, новости, подборки статей на русском и английском, собственный взгляд на события от человека, работающего в этой индустрии).
Ведь одно дело - смотреть на мир диджитал со стороны, а другое - жить в нём и уже сегодня делать его таким, каким он станет через 25 лет.

#ОблачныеТехнологии
НОВЫЙ БЕСПРЕЦЕДЕНТНЫЙ ВЫЗОВ ЧЕЛОВЕЧЕСТВУ - РЕАГИРОВАНИЕ НА ЕГО СОБСТВЕННУЮ ОШЕЛОМЛЯЮЩУЮ СЛОЖНОСТЬ
События прошлой недели породили новую волну весьма авторитетных призывов к немедленному импичменту Трампа. Обвинения звучат громко: «Он почти единолично уничтожил моральный авторитет Президента Соединенных Штатов в стране и за рубежом; не посоветовавшись ни с кем, привел нас на грань ядерной войны; посеял рознь и ненависть».

Но точно ли, что виною всему именно Трамп? И если бы Президентом США сейчас был кто-то другой, были бы принимаемые им решения существенно лучше?
Как считает известный американский физик Янир Бар-Ям (Yaneer Bar-Yam), президент независимого исследовательского института сложных систем NECSI (New Englang Complex Systems Institute) и автор мировых бестселлеров «Making Things Work» и «Solving Complex Problems in a Complex World», - проблема не в Трампе, а в несоответствии возможностей самого института президентства сильно возросшей сложности стоящих перед ним задач.

В своих недавних интервью (см. 1 и 2) Янир Бар-Ям, опираясь на результаты многолетнего цикла исследований социальной сложности с применением аппарата статистической физики и квантовой теории поля (см. 1 и 2), сформулировал вывод, имеющий колоссальное значение не только для США, но и для всего человечества.
Социальная сложность современного мира неуклонно и с ускорением возрастает и уже достигла такого уровня, что существующие иерархические системы государственного и корпоративного управления даже теоретически не в состоянии вырабатывать эффективные ответы на вызовы такой сложности.
В результате, как показывают исследования NECSI, лидеры современных «вертикалей власти» крайне быстро выходят на уровень своей некомпетентности при принятии ответственных решений, а сами системы, будь то правительство США или руководство транснациональных компаний, теряют управляемость, деградируя в качестве принимаемых ими решений.

Восстановить управляемость и предотвратить все новые волны кризисов в рамках иерархической системы управления, как показывают исследования, невозможно. Сложность мира уже превысила потолок возможностей иерархических систем управления.
Это сформировало новый, глобальный и беспрецедентный вызов для человечества – реагирование на его собственную ошеломляющую сложность.
Системы управления нужно принципиально менять. Иначе, нарастающие ошибки при принятии ответственных решений грозят человечеству всевозможными кризисами и даже гибелью.
Поэтому необходимость отказа от иерархической системы управления на государственном уровне, включая представительную демократию и институт президентства, - это главный вызов человечеству, как системе.
Не сделав этого, человечество с неотвратимостью будет констатировать все большую деградацию уровня своих лидеров и принимаемых ими решений. А в международных вопросах такая деградация – прямой путь к большой войне, после которой история нашей цивилизации может и закончиться.

#Complexity #NECSI
БОЛЬШИЕ ДЕБАТЫ: НАСИЛИЕ, ЧЕЛОВЕЧЕСТВО, БУДУЩЕЕ

С удивлением узнал, что пропустил интереснейшие «Большие дебаты: Насилие, Человечество, Будущее – Лоуренс Краусс, Стивен Пинкер и др.».
Тема дебатов весьма близка моему «бестселлеру» - Большой войны не миновать.
А кроме того, мне очень понравилось, как это сделано (состав участников и тексты выступлений, а также сценарий и продакшн).

Потому смело вам рекомендую:
— видео-тизер 1:53 https://www.youtube.com/watch?v=cIa4UPZ8n44
— видео-выступление Эрики Ченауэт о Гражданском Сопротивлении 5:16 https://www.youtube.com/watch?v=GFgtE5nneuo
— полное видео дебатов 1:18:36 https://www.youtube.com/watch?v=hZKzW5oK2jw

Обратите внимание, - проект краудфандинговый. 1я часть уже готова (см. выше).
На 2ю (Ричард Докинз, Крейг Вентер, Эрик Хорвитс, Эстер Дайсон и др.) сбор еще идет

И хотя число подписчиков моего канала не дотягивает даже до 5К, а у сообщества
«Это работает | Наука - Самое интересное из мира науки», что ведет менеджер рекомендуемого вам проекта Алан Грант, подписчиков уже 262 666, я все же уверен, что для многих из вас информация об этом проекте окажется, как и для меня, - малоизвестной и интересной 👍
АРАБСКУЮ ВЕСНУ УСТРОИЛИ ВСЕ ЖЕ США … СДУРУ

  «В иерархической системе каждый индивидуум имеет тенденцию подняться до уровня своей некомпетентности»
«Некоторые проблемы настолько сложны, что нужно быть очень умным и очень хорошо информированным, чтобы не быть уверенным в их решении»

Лоуренс Питер

Некоторые из прочитавших мой пост «Новый беспрецедентный вызов человечеству …» попросили привести конкретный пример того, как сложность мира превосходит потолок возможностей иерархических систем управления, в результате чего принимаются решения, ведущие к масштабным и абсолютно непрогнозируемым негативным последствиям.
Т.е. по сути, пример того, как непредумышленные действия лидеров рождают «Черных лебедей».
Вот такой пример – «Арабская весна».

В этом взрыве насилия и революций пророссийские пропагандисты обвиняют ЦРУ. В свою очередь, проамериканские пропагандисты обвиняют диктаторские режимы и их поддержку Россией.
На самом деле, виноваты были все-таки США. Но сделали они это не по злому или доброму умыслу, а просто сдуру, не поняв, какие могут быть последствия одновременного регулирования рынка этанола и дерегулирования товарных рынков (закон Commodities Futures Modernization Act 2000).
Для справки: этот закон, разработанный аналитиками JP Morgan, поступил в Конгресс США в последний день перед Рождеством 2000 года. Несмотря на огромный объем (тысячи страниц), он был принят в тот же день, в Сенате не обсуждался и был немедленно подписан Клинтоном, которого уже переизбрали, и он готовился покинуть Белый дом, сдавая дела Бушу.

В результате цены на продовольствие удвоились, и это (а вовсе не злая воля Кремля или Белого дома) послужило запалом для массовых волнений, насилия и революций.
Вышеизложенное – не версия событий, а результат всестороннего моделирования, учитывающего горы факторов и океан больших данных.

Вот график https://goo.gl/skQ7Du , а вот видео 2:47 http://www.necsi.edu/news/arabspring , иллюстрирующие сказанное.
Вот упоминаемый в видео отчет http://necsi.edu/research/social/food_crises.pdf.
А это новая серия исследований, продолжающих моделирование: как будет развиваться дальше http://www.necsi.edu/research/social/revolutions/ Арабская весна и как она в итоге развивалась http://www.necsi.edu/research/social/arabspring.html.

- - - - -
Приведенный пример – ярчайшая иллюстрация неспособности «вертикали власти» понять всю сложность, неоднозначность, а во многих случаях, непредсказуемость последствий принимаемых решений.
Сколько бы аналитиков ни готовило проект решения. Сколько бы экспертов ни анализировало возможные последствия. Сколько бы комитетов не вырабатывали рекомендации по рискам. Все тщетно, когда решение принимает ЛИДЕР «вертикали власти».

Почему же лидера должна постичь неудача?
Потому что лидеры, будь это самопровозгласившие себя диктаторы или избранные чиновники, неспособны понять, какие решения будут хороши для сложного общества. Невольные последствия выходят за рамки их понимания. Вне зависимости от ценностей и целей лидеров, результаты будут далеки от того, что было предметом их намерений.

В современном сложном обществе большинство решаемых лидерами проблем – т.н. «Дьявольские проблемы» (Wicked Problem http://letopisi.org/index.php/Wicked_problem) , для которых различные заинтересованные стороны могут с трудом согласовать лишь их определение, не говоря уж о том, что такое их решение.
Ну а в довершение всего, закон Эшби - управление может быть обеспечено только в том случае, если сложность управляющего, по крайней мере не меньше, чем сложность управляемой им ситуации.

Ну а теперь задумайтесь, - какова сложность Трампа, Макрона и т.п. в сравнении со сложностью стоящих перед ними проблем? 😰😫

#Complexity #NECSI
На пороге управленческой революции
(почему даже хорошие лидеры иерархий принимают все больше плохих решений)

В завершение темы «Новый беспрецедентный вызов человечеству …» важно пояснить следующее.
Речь вовсе не о том, что все нацлидеры и высшие руководители бизнеса – плохие. Да пусть даже и хорошие. Но мир настолько усложнился (технологии, общество и их взаимосвязанность), что иерархическое управление принципиально не в состоянии обеспечить принятие эффективных решений.

В бизнесе это уже осознали. Прочтите, например, превосходную статью Ицхака Адизеса — одного из непревзойденных бизнес-консультантов мира, блестящего специалиста в области эффективного управления бизнес-процессами – «На пороге управленческой революции» (1я статья этого отличного сборника).
На вопрос «Что ждет менеджмент в будущем», автор называет: «Закат авторитарного стиля управления» и «Конец иерархии».

Причин здесь две. Во все более усложняющемся, информационно-экономически и культурно взаимосвязанном мире:
1. становится все больше «Дьявольских (или как их еще называют, - дурных, диких, злобных, грязных,) проблем» - сложных, не имеющих очевидного решения или вообще неразрешимых проблем, являющихся таковыми в силу нелинейных зависимостей, неполноты, противоречий, изменчивости и даже непредсказуемости требований к их решениям;
2. «нейробиология решений» (особенности работы мозга при принятии решений) уже не оставляет шансов индивидууму (будь он хоть Эйнштейн) самому выявлять ошибки в своих оценках и принимать адекватные меры предосторожности при принятии решений.

«Дьявольские проблемы» существовали всегда. Но в ХХI в. этот класс проблем стал почти повсеместным: от проблем климата и генной модификации до этнического насилия, ожирения, образования, сексуальных меньшинств, гарантированного дохода и т.д. и т.п. И причина такой «дьявольской» трансформации проблем – рост социальной сложности/.

Что же до усложнения «нейробиологии решений», так это даже привело к возникновению новой одноименной науки. В качестве обзорной статьи о ней рекомендую Кемпбелла-Уайтхеда-Финкельстайн «Почему хорошие руководители принимают плохие решения» (4я в этом интересном сборнике). Здесь обобщен опыт анализа 83х изначально ошибочных важных решений высших руководителей: от главы Национального оперативного центра безопасности США до главы Daimler-Benz.
Прочтите и поразитесь. Казалось бы, такое понятное психологическое свойство – личная заинтересованность. Но в условиях усложнившегося мира – это свойство ведет к непреодолимым когнитивным искажениям, когда мозг «подсовывает» нам не тот паттерн или эмоциональный ярлык. А есть еще 2е и 3е свойство, искажающие «нейробиологию решений». Короче, если интересно, почитайте.
- - - - -
В итоге приходим к поразительному выводу. «Конец иерархий» предопределен психологическими ограничениями индивидуума в условиях колоссально возросшей социальной сложности. Т.е. все упирается в психологию!

Поэтому сегодня так важно ориентироваться в вопросах психологии. И я с удовольствием рекомендую вам аж 3 авторских канала Алексея Карачинского о психологии человеческого поведения и мышления, а также о критическом мышлении (@PsyEducation, @dianalysis и @ThinkCritical). У этих каналов уже тысячи подписчиков, и, подписавшись, вы можете оказаться в достойной компании.

#Complexity #Психология #ДьявольскиеПроблемы #НейробиологияРешений
Эволюция продолжается… и довольно быстро
(про гибридизацию и почему мы теперь не негры)

Работа «Геномные сигнатуры сложной интрогрессии и адаптивной эволюции у больших кошек» (популярно здесь, оригинал тут) доказала – наши представления об эволюции весьма неполны.
Cуть в том, что филогенетическое дерево оказалось вовсе не деревом, а сетью.
Биологическая концепция вида, по которой основным критерием вида есть нескрещиваемость оказалась неверной.
Виды скрещиваются. И получающиеся в результате гибриды - важный адаптационный фактор эволюции, позволяющий приспосабливаться к изменениям условий существования (климат и т.п.)

Исследователям удалось просчитать формирование ДНК 5и больших кошек - наглядный пример гибридизации.
Аналогичным образом, уже в наше время, происходит гибридизация белых медведей и гризли - 2 вида, разошедшиеся сотни лет назад.

Аналогичная история произошла и с человеком. Наши далекие предки – это предки двух видов древних людей: «обычных людей» (как мы с вами) и необычных людей – вымерших потом неандертальцев.
Примерно 40-60 тыс. лет назад «обычные люди», переселявшиеся из Африки, скрещивались с неандертальцами, населявшими Европу. Позже «обычные люди» стали скрещиваться и с другим видом наших предков – т.н. денисовцами. Дети в обоих случаях продолжали спариваться с другими «обычными людьми», передавая гены, которые и дошли до нас. Наши современники унаследовали до 2% своей ДНК от неандертальцев и до 6% от денисовцев.
Результаты гибридных скрещиваний поразительны. Например, полученные от денисовцев гены позволяют сегодняшним жителям Тибета прекрасно чувствовать себя в условиях высокогорья.

Но казалось бы, дальнейшая гибридизация человека невозможна – мы все один вид. Похоже, что нет. Ведь люди продолжают эволюционировать, и национальные различия все же есть.
Например, голландцы — самый высокий народ в мире, при этом их средний рост растет с головокружительной скоростью.
Согласно одной из гипотез, человечество эволюционирует в сторону высокого роста, и голландцы — в авангарде. А, например, португальцы с вьетнамцами плетутся в хвосте. Это отбросы эволюции что ли?

В статье также рассказывается, как всего за 8 тыс лет наши предки превратились из негров в белых, заодно научившись пить молоко.
Автор статьи задается резонным вопросом - «мы же не расисты, и оттого нам неочевидно, чем белые уж настолько лучше негров, чтобы так стремительно победить их в эволюционной схватке (даже если воевали не сами люди разных рас, а всего лишь их гены). И, кстати, далось нам это молоко, если подумать: во многих нищих и голодных регионах мира без него прекрасно обходятся.»

Ответ на этот вопрос становится все очевидней – «вместо выковывания расы сверхразумных сверхлюдей естественный отбор занят более прозаическими проблемами: делает нас более приспособленными к не слишком благоприятным условиям, в которых мы живем».

Но все же жаль, что у эволюции получилось аж 5 больших кошек, а человек - лишь один.
Зря наши предки неандертальцев и денисовцев съели. Какое адаптационное подспорье для гибридных скрещиваний во все ухудшающейся экологии мы потеряли!

#Эволюция
Матмодель уточнила слова Спасителя и Эффект Матфея
(богатые не просто продолжат богатеть, а бедные беднеть, - ситуация еще хуже)

Фраза Спасителя «ибо кто имеет, тому дано будет и приумножится, а кто не имеет, у того отнимется и то, что имеет» уже 2 тыс лет считается непреложной истиной, используемой в науке под названием Эффект Матфея.
И вот сенсация! Матмодель, проверенная на основе достоверной статистики распределения богатств за последние 100 лет существенно уточнила слова Спасителя и, соответственно, Эффект Матфея.
Моделирование показало, что у тех, кто не имеет, отнимется не только то, что они имеют, но и то, чего они не имеют.
Звучит дико, но это факт, подтвержденный не только математической формулой, но и достоверной статистикой динамики распределения богатств.
N.B. Для нас также важно, что эти результаты применимы и к сегодняшней России, поскольку относятся к любой рыночной экономике.

Про то, что богатые богатеют быстрее, полагаю, объяснять не нужно. Как сказано еще в Евангелие: «Получивший пять талантов пошёл, употребил их в дело и приобрёл другие пять талантов; точно так же и получивший два таланта приобрёл другие два; получивший же один талант пошёл и закопал его в землю» (как сделало в 90е большинство со своими ваучерами).

В современном капитализме существует система госраспределения средств от богатых к бедным через коллективные инвестиции в инфраструктуру, образование, социальные программы, налогообложение и пр.
Упрощенно это можно представить так, что каждый год любой индивидуум вносит определенную долю своего богатства в государственный котел, а государство потом в равных долях распределяет эти средства по всем. Назовем этот процесс усредненным возвратом богатств.
В результате усредненного возврата богатств, если я богаче среднего, то стану немного беднее. Если же я беднее среднего, - стану немного богаче.

Теперь о модели.
Ее математическая основа – усовершенствованная модель геометрического броуновского движения - активно применяется при моделировании роста биомассы, популяций и расчета динамики цен на акции. Новая модель работает так.
1) Авторы закачали в компьютер статистику распределения богатств в США за 1913-2014 гг.
2) «Населили» модель 100 млн. индивидуумов.
3) Установили коэффициенты модели из статистики 1913 г. и состояния тогдашних фондовых рынков.
4) Запустили моделирование, позволив компьютеру каждый модельный год подстраивать коэффициенты так, чтобы модель воспроизводила реальные статданные за соответствующий год.

Теперь о результатах.
Показав высокую точность совпадения результатов моделирования со статданными, модель построила такой процесс усредненного возврата богатств, что, начиная с 1980 г. бедные стали отдавать в общий котел государства больше, чем они имели.
Казалось бы, - этого не может быть. Как можно отдавать больше, чем имеешь? Что это – ошибка модели? Оказалось - нет. Эффект реален.

Проверив этот эффект на дополнительных статданных, авторы обнаружили, что с 1980 в США происходит отрицательное перераспределение богатств.
Его суть в том, что совокупное богатство более бедной части американского населения примерно равно нулю. А это значит, что должен существовать большой класс людей с отрицательным богатством (см. график https://goo.gl/QG11jW ), т.е. тех, у кого долг превышает состояние.

Но как это может продолжаться в течение длительного времени? Задолженности не только нужно выплачивать, но и обслуживать. А чтобы обслуживать растущую задолженность, необходимо постоянно снижать процентные ставки.

Так вот, в реальности ровно это и происходит. Процентные ставки падают с 1980 года (см. график https://goo.gl/1UQxTr ) - точно с того же года, когда ставка перераспределения в модели стала отрицательной.

Что будет дальше, ведь ставки уже достигли нуля? Это будет продолжаться бесконечно или произойдет слом в процессе перераспределения богатств от бедных к богатым?
Спаситель этого не сказал. Но модель, возможно, покажет.

Отчет по исследованию https://goo.gl/To6NCJ
Его популярное изложение https://goo.gl/cTodUW


#РаспределениеБогатств #ЭффектМатфея
Прорыв в понимании КАК снижать коррупцию

Предыдущий пост о моделировании коррупции, показавшем, что ее быстро не извести получил 52 тыс. просмотров (спасибо за репост на @techsparks Андрею Себранту), и посему тема требует продолжения.
Новое международное (США, Канада, Британия), междисциплинарное (математика, психология, науки о поведении, экономика, эволюционная биология) исследование (как обычно, ни одной ссылки в Рунете 👎) – еще более прорывное, поскольку дает ответ на практический вопрос, как конкретно снижать коррупцию:
— какие действия в конкретных условиях работают хорошо, какие – плохо, а какие – вовсе не работают?
— можно ли одним и тем же - в одних условиях коррупцию снизить, а в других повысить?

Даже интуитивно понятно, что уровень коррупции коррелирует с институциональными, экономическими и культурными факторами. Однако причинные направления этих взаимозависимостей пока что не удавалось определить.
При этом для всех очевидно, что, например, в Кении и Дании снижать коррупцию нужно по-разному.
Для справки. В Кении 8 из 10 общений с чиновниками сопровождаются взятками, и в среднем человек ежемесячно дает 16 взяток. В Дании половина сегодняшнего населения с большой вероятностью не даст ни одной взятки за всю жизнь.
Так как узнать, - какими методами пользоваться в конкретной стране в конкретных условиях?
Ведь эксперименты здесь слишком длительны и дороги (в смысле последствий), да еще и не повторяемые. Остается только моделирование.

В данном исследовании удалось построить классическую обобщенную линейную смешанную регрессионную модель Маркова, основанную на методе Монте-Карло, для оценки влияния на взяточничество:
(1) различных методов борьбы со взятками и, в первую очередь:
— институциональное наказание (по суду)
— наказание со стороны лидера (по понятиям)
(2) крутости лидера в смысле его возможностей и желания наказывать за взятки
(3) состояния экономики в стране;
(4) культурного опыта населения (напр. число поколений, выросших в условиях сильного взяточничества).

N.B. Модель учитывает реалии нашего мира:
А) Госинституты и даже сам лидер также могут быть подвержены коррупции.
Б) У лидера всегда есть варианты действий:
— самому получить взятку за то, чтобы «не видеть» конкретное взяточничество
— возмутиться и наказать
— ничего не предпринимать

Результатов у этого исследования (интереснейших и порой совершенно контр-интуитивных) - море.
Приведу лишь основные.
1) Расширение карательных возможностей лидеров снижает антикоррупционное содействие общества (с точностью до наоборот к институциональному наказанию).
2) Любые антикоррупционные стратегии работают лишь до определенного предела. После этого предела, особенно, если лидер слаб и экономика не фонтан, эти стратегии вообще перестают работать.
3) При числе поколений, выросших при высокой коррупции > 1, ситуация резко осложняется – большинство стандартных стратегий перестают работать.
4) Есть несколько сочетаний условий в стране (здесь описывать долго, но к России, похоже, это применимо), когда прозрачность в вопросах коррупции может приносить больше вреда, чем пользы (интересный вывод для Навального).
5) Выбирая из 3х вариантов решения (см. выше п. Б), в условиях сильной экономики лидер, скорее всего, сам возьмет взятку. А для сильного лидера, этот вариант - основной (см. график).

Отчет об исследовании – 10 стр.
Детальное описание результатов - таблицы, графики … на 134 стр.

#Коррупция
Новый поворот в развитии ИИ

С одной стороны, машинное обучение достигло многого. ИИ уже обыгрывает чемпионов в Го, неплохо управляет автомобилем, быстро прогрессирует в игре в покер, распознает рак на МРТ лучше врачей и т.д. и т.п.
С другой стороны, не понятно, куда двигаться дальше. А нужен какой-то принципиальный поворот. Ведь до универсальных возможностей мозга пока, как до Альфа Центавра. ИИ по-прежнему туп, как пробка, и лишь умеет перемалывать тонны данных, самосовершенствуясь в решении узких специализированных задач.
При смене задачи, приходится начинать учить ИИ (или давать ему самому учиться), по сути, с нуля. Да и с перемалыванием данных засада – ИИ не умеет сам отбирать нужные данные, а лишь способен очень быстро обрабатывать всё, поступающее ему на вход. А как известно – «мусор на входе – мусор на выходе».
И вот – новый поворот.
На только что закончившейся конференции IJCAI 2017 IBM представила 2 новых направления совершенствования ИИ, основанных на имитации функциональных свойств мозга.

1е направление – использование модели внимания, мотивируемого полезностью - способности быстро выбирать и обрабатывать самую нужную и важную информацию из огромного потока сенсорных сигналов (визуальных, слуховых и т. д.) – по англ. Quick adaptation with reward-driven attention.
Новый алгоритм учится быстро фокусировать внимание на обработке самых важных данных. И это обучение основано на вознаграждении (обратной связи), получаемом во время выполнения задания. Чем выше награда, тем больше внимания будет уделяться определенной части данных.
Новый подход абсолютно революционен. Он позволяет не просто мотивировать ИИ, но и увязывать мотивацию с целью действий. Т.е. действие перестает быть просто обучением ИИ, а способно, например, превратиться в обеспечение ИИ собственного существования (так, к примеру, работает мозг антилопы, в зоне внимания которой дрогнула ветка, за которой может скрываться тигр).

2е направление основано на нейрогенном обучении или нейропластичности - адаптации модели меняющегося мира в реальном времени – по англ. Building memories for long term adaptation: neurogenetic learning. В мозге это возможно за счет роста новых и разрушении старых клеток мозга (нейронов) и динамической перестройки их связей.
До сих пор основой машинного обучения было изменение силы нейронных связей. Новый революционный подход позволяет также расширять и сжимать скрытые слои сети, имитируя рождение и смерть нейронов.
Нейрогенез добавляет новое измерение в машинное обучение. Алгоритм не только адаптируется к новой среде (например, к новому классу задач), но также сохраняет воспоминания о прошлом опыте решения иных классов задач, тем самым делая шаг к ИИ, обучающемуся на протяжении всей его «жизни».
- - - - -
P.S. Революционность двух вышеописанных подходов такова, что кавычки в слове «жизнь» применительно к ИИ могут стать лишними.

Подробней со ссылками на научные статьи с описанием экспериментов – здесь
А тут и тут – статьи с популярным изложением.

#AI
О дивный новый мир человеко-машинных сетей

Человечество даже не заметило, как проскочило эпоху компьютерных сетей (КС). Сегодня мы живет уже в эпоху человеко-машинных сетей (ЧМС), встроенных в ежедневную жизнь, как для личного, так и для профессионального использования и оказывающих значительное влияние на все аспекты развития науки, технологий и общества.
ЧМС – это сети, узлами которых являются и компьютеры (смартфоны, гаджеты, устройства интернета вещей), и люди.

— Структура, архитектура и функционирование ЧМС принципиально иные, чем у КС.
— Их поведение, в отличие от КС, не только недетерминировано, но, зачастую, и непредсказуемо.
— ЧМС – самоорганизующиеся сложные системы, являющиеся источником синергии и проводником для инноваций.

Изучение ЧМС требует междисциплинарного подхода с привлечением теории сложных систем, концепций социотехнических систем, теории актор-сетей, кибер-физико-социальных систем и социальных машин, прикладных вычислений, законодательства, социальных и поведенческих наук.

ЧМС – столь новое научное направление, что в нем пока что отсутствует принятая таксономия (чтобы понимать, о чем идет речь), и потому классификация тем здесь пока что возможна лишь по ключевым словам.
В опубликованном междисциплинарном обзоре «Понимание ЧМС» рассмотрено 8 видов таких сетей:
✔️ общественно-ресурсные вычисления (ключевые слова: “public resource comput*” OR “volunteer comput*” OR “peer-to-peer comput*”,
✔️ краудсорсинг (crowdsourcing OR “crowd sourcing” OR “crowd work” OR “human computing” OR “human computation” OR “social comput*”)
✔️ веб-поисковые системы (“search engine” AND impact) OR (“search engine” AND design),
✔️ краудсенсинг – краудсорсинг данных с датчиков на мобильных устройствах (“phone sensing” OR “mobile sensing” OR “crowd sensing” OR crowdsensing OR “participatory sensing”),
✔️ онлайн-рынки (“e-commerce” OR “prediction market” OR “online market” OR C2C; “file sharing” OR “peer-to-peer”),
✔️ социальные медиа ((“social network” AND site) OR (“social network” AND online) OR “social media”),
✔️ многопользовательские онлайн-игры и виртуальные миры (“online game” OR “multiplayer game” OR “virtual world”),
✔️ массовое сотрудничество (“open source” OR wiki OR “mass collaboration”).

В обзоре систематически отобраны 200+ источников по всем указанным типам ЧМС. Они проанализированы с упором на особенности проектирования ЧМС. Также обсуждаются риски, связанные с ЧМС, и выявлены новых тенденций в области проектирования и развития ЧМС.
Так выглядит облако https://yadi.sk/i/juJz3ifH3MPVnf из 200+ отобранных источников.
А это ссылка на обзор https://arxiv.org/abs/1511.05324

Добро пожаловать в дивный новый мир ЧМС! Нам здесь жить.

#ЧеловекоМашинныеСети
Интереснейшая иллюстрация влияния «лоскутного расселения» на рост насилия в регионе - из кулуаров проходящего съезда разведки США.
Для сравнения, вот так выглядел Сирак (Сирия+Ирак) 3 года назад. Детализация на карте разведки, конечно, повыше, чем у Businessinsider, но тренд понять можно.

#ЭтноГеография #Насилие
В дополнение к словам Спасителя

Исследование «Технологии, институты и неравенство за 11 тыс. лет» https://goo.gl/BwfX5u в пандан к моему посту «Матмодель уточнила слова Спасителя и Эффект Матфея» https://t.me/theworldisnoteasy/303 отвечает на 2 важнейших вопроса.
А) Зависит ли неравенство от общественно-политических формаций и уровня развития технологий?
Б) От чего сильнее всего зависит неравенство? (кроме собственных способностей людей и их таланта, характера и судьбы)
Ответы на эти вопросы опираются на анализ широченной базы документированных фактов за последние 11 тыс. лет. Ответы таковы.
А) Ни от общественно-политических формаций, ни от уровня развития технологий неравенство в обществе не зависит – см. рис. 1 https://yadi.sk/i/EwGJpGnG3MiNob.
Египет времен Клеопатры и современные США имеют примерно одинаковый коэффициент Джини (чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице).
Б) Сильнее всего неравенство зависит от наличия у общества государства.
Древнее рабовладельческое и современное капиталистическое общество примерно одинаковы по коэффициенту Джини - см. рис. 2 https://yadi.sk/i/t1IIPr9N3MiNqW.
Также не играет никакой роли демократическая или авторитарная форма управления государством – см. рис. 3 https://yadi.sk/i/MGLOH0eh3MiNrY.
Т.е. стоит только людям создать государство (форма самоорганизации общества, обладающая монополией на насилие), и платите в кассу – богатые будут богатеть, а бедные беднеть до конца веков.

N.B. Вообще-то общество может жить и без государства. Может стоит попробовать?

#РаспределениеБогатств #ЭффектМатфея
Слова Спасителя с позиции теории игр
Эта статья просто и наглядно поясняет с позиции теории игр, почему иерархия власти (государство) ведет к росту неравенства при наличии 3х условий.
Для самого большого (по территории) государства мира, на примере задачи о пяти пиратах, это cформулировано так:
— рост неравенства будет продолжаться даже если 0,1% населения преуспевает за счет 99,9%, если:
1) общество с централизованным источником благосостояния (например, ресурсозависимое), и
2) страты не доверяют друг другу,
3) а вопрос власти решается большинством
В итоге «Капитан» сохраняет контроль над 98% добычи в обстановке тотального недоверия в команде и неспособности ее членов договариваться и соблюдать договоренности.
- - - -
Спаситель, по-видимому, был корифеем в теории игр и, зная человеческую натуру, точно определил ее следствие - богатые будут богатеть, а бедные беднеть.
#РаспределениеБогатств
«Общество с волонтерами» более живуче, чем «общество с МЧС»
Эта метафора резюмирует поразительный вывод большого кросс-культурного исследования «Социальная устойчивость к климатическим катастрофам в древних обществах», результаты которого скоро будут опубликованы известным американским антропологом и археологом Питером Перегрином.

Автор задался целью прояснять, какое из 2х типов социальных устройств общества:
А) общество с корпоративной политической стратегией и централизованным принятием решений,
Б) общество с широким участием членов общества в политической жизни и принятии решений,
- подвержено меньшему риску при возникновении крупных природных катастроф.

Практическая проверка и анализ фактов по 33 археологически исследованным обществам (Северная и Южная Америки, Европа, Африка, Ближний Восток и Индия), пережившим 22 крупные природные катастрофы в течение 3 тыс. лет, показал:
✔️ социальное устройство общества типа Б обеспечивает бОльшую устойчивость к катастрофическим последствиям климатических катастроф и, в целом, обеспечивает лучшее реагирование при возникновении подобных бедствий.

Казалось бы, - какое отношение имеют междисциплинарные исследования археологов, антропологов, математиков к поиску оптимального устройства общества, обеспечивающего его лучшее выживание?
И вот такой замечательный пример.

В свете неуклонного роста числа и масштабов стихийных бедствий и природных катастроф, надо мотать на ус.

#ПриродныеКатастрофы #СоциальноеУстройство #Общество
Новая модель власти над умами

Разработана и протестирована модель распространения информационных каскадов, позволяющих меньшинству эффективно изменять преференции большинства при выборе конкурирующих продуктов, услуг, идей, кандидатов и т.п. Т.е. по сути, - управлять выбором масс в маркетинге, распространении новых идей или при избирательных кампаниях исключительно средствами сетевых технологий.
Новая модель показала, - сетевое меньшинство (реальные люди или боты) вполне способно убедить большинство в достоверности фейковой новости или внедрить в массовое сознание альтернативный доминирующему идеологический мем.
Подробней об этом я написал здесь https://goo.gl/98sVVn - 3 мин. чтения.
А таково резюме.
- - - - -
Мощность и действенность цифрового влияния напрямую зависит от возникновения каскада - вирусного эффекта эпидемического распространения контента по значительной части сети.
Исследование «Хипстеры в сетях: как меньшинство может превратиться в большинство противников истеблишмента» https://arxiv.org/abs/1707.07187 позволяет понять, как при возникновении каскада большинство меняет своё предпочтение (убеждение, точку зрения и т.д.) на альтернативное, индуцированное меньшинством.
Или, попросту говоря, - вместо выбираемого большинством продукта Х, склоняется к покупке другого продукта Y, рекомендуемого меньшинством.
Исследование показало:
1. Для переубеждения большинства, меньшинство может не превышать 10% (для высококластеризованной сети класса Facebook – до 20%). Таковым может быть число контролируемых ботами индивидуальных социо-медийных эккаунтов, создаваемых в целях переубеждения большинства - при проведении выборов, для победы над продуктом конкурента и т.д.
2. Важную роль для превращения идеи/предпочтения меньшинства в таковую для большинства играет временная задержка между получением человеком информации из своего локального и глобального окружения (например, своей ленты в Facebook и сообщений СМИ).

Особенно важно, что результаты этого исследования могут использоваться, как лидерами рынка или находящимся у власти истеблишментом, так и конкурентами или оппозицией.
Вопрос только, - какая из сторон быстрее освоит новую технологию каскадного изменения мнений большинства.

#Каскады #СоциальныеСети
Революция аналитических технологий

Живя в революционную эпоху, трудно это осознать, а зачастую, и просто заметить.
Последние 10 лет происходила революция аналитических технологий. Однако, чтобы ее полноценно отрефлексировать, нужно было, чтобы Томас Х. Дэвенпорт и Джейн Харрис почти заново переписали свой бестселлер 2007 года - «Competing on Analytics».
Ключевая идея этой книги была названа Harvard Business Review одной из двенадцати наиболее важных идей управления за последнее десятилетие, а резюмирующая книгу статья, вошла в ТОР 10 «must read» статей за всю 75-летнюю историю HBR.
Новое издание «Competing on Analytics» в бумажном виде выйдет 19го сентября, но в цифре уже доступна.

Не буду даже пытаться резюмировать 320 стр. интересного, полезного, «must read» текста.
Хочу лишь обратить внимание на 6 кардинальных новаций в аналитических технологиях. Эти новации 10 лет назад либо просто не существовали, либо присутствовали в виде концептов, а вовсе не технологий.
Их трансформация из концептов в технологии являются сутью произошедшей революции, для описания которой во 2м издании авторам потребовалось переписать почти всю книгу.

Вот эти 6 кардинальных новаций в аналитических технологиях:
1. Большие данные (Big Data):
— приведшие к появлению двух революционных технологических феноменов - Hadoop (масштабируемые, распределенные вычисления и хранение данных) и Озеро данных (Data Lake),
— и стимулировавшие новую Open-source революцию.
2. Операционная аналитика – интеграция аналитики в производственные процессы в реальном времени.
3. Компонентность и микроуслуги аналитики – создание «лего-конструкторов», облегчающих интеграцию.
4. Потоковая аналитика – системы реагирования на происходящие события (Event-Processing) путем аналитической обработки данных, непрерывно поступающих из потоковых источников (напр. Интеренет вещей).
5. Аналитика Grid / In-memory – новые аппаратные архитектуры, обеспечившие гигантский скачок в производительности аналитических технологий.
6. Когнитивные технологии – новация новаций (включающая в себя: машинное и глубокое обучение, обработку естественного языка, алгоритмическая роботизация и пр.), обеспечившая возможность появления Аналитики 3.0 – Бизнесообразующая аналитика – т.е. создание и постоянное совершенствование товаров и услуг на основе аналитики (это высшая форма аналитики в череде ее эволюционных ступеней: описывающая, объясняющая, предсказывающая, рекомендующая, оптимизирующая).

Поясняющее резюме Томаса Х. Дэвенпорта по каждой из 5 новаций можно прочесть здесь - на 2 мин чтения.
Также рекомендую по этой теме статью Дэвенпорта «Аналитика 3.0»и презентацию SAS

#АналитическиеТехнологии
Мнение технологических реалистов
Технологические пессимисты все громче взывают о рисках ИИ и робототехники, создающих угрозы для нашей конфиденциальности, рабочих мест и даже безопасности, поскольку все больше и больше задач передаются мозгам на основе кремния.
Оптимисты же, в противовес, рисуют все более поразительные картины будущего, где роботы с ИИ уже не только грузчики, уборщики и слесари, а художники, поэты, композиторы, режиссеры и дирижеры.
Голос реалистов слышен не так громко, и потому особенно ценен. Особенно, если речь не просто об отдельных публикациях, а о ресурсах, взявших на себя миссию «просвещенных реалистов», цель которых «делать своих подписчиков умнее каждый день», рассказывая о применениях наиболее прорывных технологий, которые уже работают.

Первый из таких ресурсов, который я смело рекомендую, - BBC Future, на днях рассказал о уже работающих проектах, показывающих замечательные результаты за счет максимального использования 3х простых качеств ИИ при выполнении рутинных работ:
1) физическая неутомимость,
2) толерантность к скуке,
3) способностью обнаруживать паттерны - шаблоны, выявляющие закономерности в рисунках, фото, звуках, динамике изменений и т.д. и т.п.
По всем 3м качествам, ИИ намного превосходит все, на что способны люди.
Всего один пример (остальные смотрите на BBC Future).
Проект Microsoft’s Project Premonition использует ИИ для согласованного управления:
— дронами, находящими «места тусовки» москитов,
— роботизироваными ловушками москитов,
— анализаторами патогенов в ДНК крови, забранной москитами из укушенных ими животных.
Система уже работает и позволяет с точностью 88% определять потенциальные очаги эпидемий лихорадки Зика за 3 мес. до того, как она может начаться – видео

Второй из рекомендуемых ресурсов «просвещенных реалистов» - российский телеграм-канал «Это работает».
Столь же обширный по тематике, как и BBC Future, этот канал обладает своей фишкой. Он засеивает Рунет видео-лекциями, собирая их в тематические «сериалы», закручивая их интригу «от сезона к сезону», так, что они превращаются в восприятии аудитории в один захватывающий фильм на единственную тему - человечество в эпоху Интернета.
Вот пример такого «сериала» из всего одного поста:
— Сон, мелатонин, старение: в чём связь?
— Удивительная история открытия и освоения одного из самых загадочных явлений природы – электричества.
— Почему этику в России так часто заменяют рациональные мотивы и стремление к утопической стабильности.
— Счастье дурака: что, как не глупость, может наполнить нашу жизнь удовольствием и радостью.

Для меня же самое главное, что оба канала - BBC Future и «Это работает» – источник удовлетворения ненасытного любопытства.
А любопытство, как писал Станислав Лем, это то, что объединяет разум и сверхразум.
Так что, оно того стоит!

#AI #ПолезныеРесурсы
Правда о вайперах и о социологии
Это филигранно четко проведенное научное исследование 9ти университетов и научных центров США:
- во-первых, является свидетельством начинающейся революции в области опросов населения по всему спектру тем: от социологии до маркетинга;
- во-вторых, изумительно точно иллюстрирует превращение мира в «мир впечатлений», идет ли речь об экономике, здравоохранении, законодательстве или моде.
И все это, - на примере изучения вопроса, почему люди курят электронные сигареты (вейпы). Поразительно! Но давайте по порядку.

Сначала о революции в опросах.
Мало кого нужно убеждать в несовершенстве, а порой и в намеренной предвзятости опросов. Причины этого понятны: кого и как спрашивают, какие «правильные вопросы» задают, какие «правильные варианты» ответов подсовывают и т.д.
А ведь опросы – основа основ для понимания мнений людей и в социологии, и в маркетинге.
Однако, по мере превращения мира в цифровой, миллиарды «цифровых следов» высказываемых людьми мнений и преференций стали ежедневно пополнять глобальный сетевой архив человечества, доступный для анализа любому исследователю.
Казалось бы, зачем тогда нужны эти олдскульные опросы? Да затем, что до сих пор не было предложено методик для тщательного семантического отбора и очистки данных в сетевых архивах, позволяющих из гор спама, рекламы, заумных или идиотских высказываний отбирать только нужное, достоверно трактуемое и надежное.
И вот, наконец, сделали:
— очень тщательно;
— с применением самой современной математики (логистическая регрессия, функции для извлечения н-грамм из текста, дополненные 300-мерными вставками word2vec, использующими стратегию Миколова и т.д.);
— используя самые продвинутые технологии (машинное обучение, краудсорсинг аннотаторов и т.д.).
Результат:
✔️ возможность использования отработанной методики для получения информации о мнениях: достоверной, проверяемой, не искаженной (намеренно или непреднамеренно) организаторами опросов и масштабируемой аж до размеров человечества.

Ну а теперь кратко о вайпах и «мире впечатлений».
Не верьте тому, что люди переходят на электронные сигареты, потому что они менее вредны, чем обычные. И кстати, не верьте также, что вейпы «ничуть не безопаснее обычных сигарет».
Другие причины перехода на вейпы (стоимость, приятный вкус, манящий запах, возможность курить в помещении, отсутствие продуктов горения и т.д.) – как оказалось, также не сильно существенны для подавляющего большинства.
Главных причин перехода на вейп две:
1) Сначала (первые годы, как люди про вейп узнали) – они, главным образом, воспринимались, как способ бросить курить. В этом была их главная фишка и притягательность.
2) Потом (с 2015) – они просто стали предметом социального имиджа – модно, прикольно, выделяет из общей массы – как бы, соотнося обладателя с «клубом избранных» (а если еще в другой руке iPhone, - тогда совсем круто).
Короче, наглядный и понятный пример - миром теперь правят не потребительские свойства продуктов, а исключительно впечатления.

#Соцопросы #ЭкономикаВпечатлений
ИИ – это не только мозг, но и тело

Игрушка-пружина Слинки никак не может считаться разумным существом, но её умение спускаться с лестницы – просто чудо механики.
Человек при спуске по лестнице, решает те же задачи управления механикой движения согласно геометрии ступеней, своим размерам и весу.
Что же управляет данным процессом - когнитивная обработка в мозге?
А как же это делает Слинки, у которой нет мозгов, а есть только «тело»?
Эти вопросы открывает перед нами фантастически интересную область «воплощенных агентов» (embodied agent) и «морфологических вычислений» (morphological computation), про которые в Рунете почти ничего.
А ведь эта область - штука сильнее, чем «Фауст» Гете 😊

Если совсем коротко - «воплощенный агент», это агент, обладающий «воплощенным интеллектом», т.е. интеллектом, возникающим при взаимодействии мозга, тела и окружающей среды, причем широкий ряд вычислений выполняется телом.
Биология дает множество примеров.
Возьмите проблему осторожного захвата тонкого, хрупкого предмета - такого, как высушенный цветок. Для робота это наисложнейшая по вычислениям задача. Процессоры должны точно вычислить местоположения захватов и силу их сжатия: слишком мало силы - и цветок ускользает; слишком много - и он превращается в пыль.
С человеческой рукой мозг не должен заморачиваться сложнейшим вычислительным процессом. Мягкая ткань в кончиках пальцев, обратная связь в суставах пальцев и трение сухожилий помогают мозгу решить проблему.
И главное – человек может это делать сходу - без какой-либо тренировки. Тогда как роботам, например, музыкантам), необходима длительная предварительная настройка и тренировка.

Другой пример - морфология глаза насекомого, способствующая обнаружению движения. У мозга просто не хватает быстродействия для супербыстрой реакции на движение в окружающем мире. И к вычислениям подключается тело. Для этого меняется строение глаз. Т.н. фасеточный глаз способен быстро обнаруживать движение, поскольку его временная инерционность в 15 раз меньше, чем у глаза человека.

Оба примера иллюстрируют, как вычисления, которые должен выполнять мозг, передаются на аутсорсинг телу. Этот аутсорсинг и привел к появлению в 2006 г. понятия «Морфологических вычислений», которое теперь является центральным понятием в области т.н. «воплощенного искусственного интеллекта».

Но есть проблема - не все физические процессы в теле можно рассматривать как вычисление в классическом смысле.
До сих пор считалось, чтоб решить этот вопрос можно, разбив морфологические процессы на: морфологическое вычисление, морфологический контроль, физические процессы поведения, и прочие физические процессы.
Однако, похоже, что это тупиковый подход. Нужна единая концепция «воплощенного искусственного интеллекта». Обычный «ИИ без тела» здесь не рулит.

Об этом только что говорили на совместном воркшопе Математического института Макса Планка и Института междисциплинарных исследований Санта-Фе.

Если тема вам интересна и стоит про это еще писать (или наоборот) – дайте знать.

#МорфологическиеВычисления #ВоплощенныйИнтеллект
Умный - не значит нервный
(развенчан миф, что невроз навязчивых состояний – расплата за высокий IQ)

Что-то захотелось начать неделю с хорошей новости.
Вот наш канал иногда называют «канал для умных». А миф, что люди с высоким IQ чаще других страдают от тревожного синдрома (ака невроз навязчивых состояний или обсессивно-компульсивное расстройство - ОКР), с подачи Зигмунда Фрейда, уже более века ходит по миру.
ОКР характеризуется наличием тягостных, тревожных мыслей (обсессий). Они возникают автоматически, непонятно от чего, и воспринимаются человеком как нечто навязчивое, неприятное, невыносимое, не дающее от них избавиться усилием воли. Спасают от обсессий т.н. компульсии – стереотипные действия, способные временно устранить эти навязчивые мысли и понизить тревожность.
Об ОКР где только ни рассказывают: от Википедии до специализированных сайтов. Повсеместно этот невроз признается типичной расплатой за высокий интеллект. Будь ты профессор или кинорежиссер, музыкант или актер, но если умен – значит высок риск ОКР. Масс-медиа из года в год рассказывают об этом на примерах Вуди Аллена, Джонни Деппа, Ким Бейсингер, Дэвида Бекхэма и десятков других звезд.
Стало обычной практикой даже не обращаться с этим к врачам. Мол, зачем? Ведь за все надо платить. А уж за ум – тем более.

И вот приехали! Мета-анализ https://www.ncbi.nlm.nih.gov/pubmed/28864868 98и наиболее авторитетных исследований на тему ОКР однозначно показал: связь ОКР с высоким IQ - это чистый миф, за которым нет ни-че-го.
И что поразительно. Мифу более 100 лет. Он весьма популярен и распространен. Эксплуатируется в кино, сериалах, романах, телепередачах. Приведу немного забавных деталей.
Например, Вуди Аллен, известный невротик, везде демонстрирующий свой невроз, пользуется им для зарабатывания немалых денег, построив на неврозе весь свой кинообраз: "Невроз заменяет мне аэробику".
А Джонни Депп ужасно боится клоунов. «Они с разрисованным лицом и фальшивыми улыбками. Кажется, что они что-то скрывают под ними, какое-то истинное зло».
Николь Кидман боится бабочек. «Это так странно, что я не боюсь, змей или пауков, а боюсь бабочек». У Памелы Андерсон – боязнь зеркал. А Киану Ривз (тоже мне Нео и Джон Вэйн в одном флаконе!) страшно боится темноты.

И вот миф, развенчан. Но многие ли про это узнают?
В Рунете я нашел аж 2 ссылки. И то, потому что знал, что ищу. А ведь со дня публикации мета-анализа прошло более 3 недель.
Поэтому и решил поделиться с вами этой информацией.

Все- таки приятней, читая интересные каналы, становиться умнее без дополнительного риска превратиться в героя Вуди Аллена с 2х страничным списком страхов (первым из которых является солнечный свет 😎 ).

#IQ #ОКР
Может ли BigData-подход предсказывать новые открытия

BigData-подход (соберите много-много данных, запустите комп искать в них образцы корреляций, попытайтесь дать трактовку наиболее интересным из найденных корреляций и используйте их для предсказаний) показал свою продуктивность и универсальность.
Так почему бы не использовать его для предсказания новых научных открытий: кто, что, где, когда откроет прорывного в научных исследованиях?

Казалось бы, данных море: планы исследований, объемы финансирования, персоналии исследователей, их статьи и доклады, гранты и премии и тд. Все это стали тщательно записывать задолго до интернетовской эпохи. И что?
Так вот. Есть такая новая исследовательская область - Science of science, а в ней - интереснейшее направление – Data-driven predictions in the science of science, - которое как раз и занимается выявлением паттернов в научных исследованиях, которые можно использовать для предсказаний.
Текущее состояние этого направления описано в эссе с одноименным названием, опубликованном учеными 4х известных американских и европейских научных центров.
http://science.sciencemag.org/content/355/6324/477.full

Резюме такое.
1) Каждое новое открытие можно позиционировать по шкале от «Непредсказуемое» до «Предсказуемое» с десятком промежуточных состояний между ними - см. рис.
https://d2ufo47lrtsv5s.cloudfront.net/content/sci/355/6324/477/F1.large.jpg?width=800&height=600&carousel=1
2) BigData-подход отлично работает применительно к зоне, близкой к «Предсказуемое», например, выявляя следующее:
— самыми продуктивными по числу публикаций являются первые 8 лет научной карьеры (а пиковый год – 5й);
— однако, самая ценная работа любого ученого может быть равновероятно опубликована в любом году его карьеры.
3) Касательно же «Непредсказуемое», BigData-подход не дает ничего. Эти открытия реально непредсказуемы (можно писать без кавычек).

Но это еще полбеды. А беда вот в чем.
Многие непредсказуемые открытия – это «спящие красавицы» - уже открытые и хорошо описанные прорывные идеи, лежащие в столах авторов и редакций (обычно, в архивах) и ждущие, когда научная общественность, наконец, их догонит (в обоих смыслах этого слова).
Такими «спящими красавицами» были: ныне знаменитая работа 1935 года Эйнштейна, Подольского и Розена по квантовой механике, доклад 1958 года Розенблатта о искусственных нейронных сетях (да-да, не удивляйтесь, что так давно) и многие другие.

Самое прискорбное, что наличие «спящих красавиц» и другая большая беда – закон Матфея для науки (уже признанные станут еще более признанными), - суть следствие используемого человечеством принципиально неверного принципа оценки перспективности научных направлений «от достигнутого» - по предыдущим успехам (например, цитирование).
Следствие из этого доминирующего ошибочного научного принципа выражается в появлении «самосбывающихся пророчеств». Открывают то, что и предсказали. А куда более важные и ценные открытия не делаются или, еще хуже, - пребывают в летаргии «спящих красавиц».

Ну и самая страшная из бед – от ученых все чаще требуют доказательства немедленной и ощутимой пользы от их работы. А как следствие, тревожная тенденция - ставшие традиционными заявления новых Нобелевских лауреатов, что их открытия, над которыми они работали в прошлых десятилетиях, были бы невозможны в сегодняшней исследовательской среде.

Прочтите еще раз последнее предложение. Т.е. раньше это было возможным открыть, а теперь, к сожалению, уже нет.
И это значит, что нам только кажется, что наука, беря все новые и новые высоты, идет правильным путем к вершинам, что открывают перед человечеством самые многообещающие и желанные перспективы.

Science of science показывает, что это не так.
Видимо, в какой-то момент свернули не туда. И «с тех пор все тянутся предо мною кривые, глухие, окольные тропы…»

#ScienceOfScience #Предсказания #ЭффектМатфея