Thedataschoool
30.8K subscribers
145 photos
1 file
615 links
Learn everything about data analytics, be the first one to know about the job openings, and learn how to upgrade yourself using AI - in short find the trending knowledge at one place
Download Telegram
What time do you usually code or Practice SQL?

You can comment Your opinion ๐Ÿ“Œ
Anonymous Poll
26%
Morning ๐ŸŒž
14%
Afternoon โ˜€๏ธ
34%
Evening ๐ŸŒ’
26%
Late Night๐ŸŒ™
๐Ÿ”ฅ ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐— ๐˜‚๐˜€๐˜ ๐—ž๐—ป๐—ผ๐˜„ ๐—ง๐—ต๐—ถ๐˜€!๐Ÿ“Œ

Want to level up in Data Analytics, SQL, Excel, Power BI & Data Science without burning out?

Here are some ๐—ฒ๐—ฎ๐˜€๐˜† ๐—ต๐—ฎ๐—ฐ๐—ธ๐˜€ & ๐—ฝ๐—ฟ๐—ผ ๐˜๐—ฟ๐—ถ๐—ฐ๐—ธ๐˜€ every analyst should know ๐Ÿ‘‡

๐Ÿงญ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ โ€” ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜ ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ๐˜€
โœ… ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐˜„๐—ถ๐˜๐—ต ๐—ฎ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป: Always define the business question first โ€” every analysis should answer one clear question.
โœ… ๐—ฆ๐—ฎ๐—บ๐—ฝ๐—น๐—ฒ ๐—™๐—ถ๐—ฟ๐˜€๐˜: Work on a representative sample before running heavy queries on full datasets. Saves time and cost.
โœ… ๐—ฉ๐—ถ๐˜€๐˜‚๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ ๐—˜๐—ฎ๐—ฟ๐—น๐˜†: Plot early โ€” charts reveal patterns and oddities faster than tables.
โœ… ๐—ฅ๐—ฒ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†: Keep scripts/notebooks with comments so results can be repeated and audited.
โœ… ๐—”๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜๐˜€: Schedule daily/weekly exports for recurring dashboards โ€” frees up time for deep work.
โœ… ๐—ฉ๐—ฒ๐—ฟ๐˜€๐—ถ๐—ผ๐—ป ๐—ฐ๐—ผ๐—ป๐˜๐—ฟ๐—ผ๐—น: Save SQL/notebook changes in Git โ€” small habit that prevents big regressions.

๐Ÿ“Š ๐—˜๐˜…๐—ฐ๐—ฒ๐—น โ€” ๐—ฆ๐—ฝ๐—ฒ๐—ฒ๐—ฑ ๐—ต๐—ฎ๐—ฐ๐—ธ๐˜€
โœ… ๐—™๐—น๐—ฎ๐˜€๐—ต ๐—™๐—ถ๐—น๐—น: Start typing a pattern (e.g., names) and press Ctrl+E to auto-fill โ€” massive time saver.
โœ… ๐—ฃ๐—ถ๐˜ƒ๐—ผ๐˜ ๐—ง๐—ฎ๐—ฏ๐—น๐—ฒ ๐—ถ๐—ป ๐Ÿฎ ๐—ฐ๐—น๐—ถ๐—ฐ๐—ธ๐˜€: Select data โ†’ Alt + N + V (or Insert โ†’ PivotTable) to build summaries fast.
โœ… ๐—œ๐—ก๐——๐—˜๐—ซ + ๐— ๐—”๐—ง๐—–๐—› (๐—ถ๐—ป๐˜€๐˜๐—ฒ๐—ฎ๐—ฑ ๐—ผ๐—ณ ๐—ฉ๐—Ÿ๐—ข๐—ข๐—ž๐—จ๐—ฃ): More flexible and faster for large sheets.
โœ… ๐—ฆ๐—ต๐—ผ๐—ฟ๐˜๐—ฐ๐˜‚๐˜๐˜€: Ctrl+; (insert date), Ctrl+Shift+L (toggle filters), Alt+Enter (line break in cell).
โœ… ๐—™๐—ผ๐—ฟ๐—บ๐˜‚๐—น๐—ฎ ๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†: Use Named Ranges instead of raw cell refs for clarity.
โœ… ๐—œ๐—™๐—˜๐—ฅ๐—ฅ๐—ข๐—ฅ: Wrap tricky formulas with IFERROR(formula, "โ€”") to hide ugly errors.
โœ… ๐—ฆ๐—ฝ๐—ฟ๐—ฒ๐—ฎ๐—ฑ๐˜€๐—ต๐—ฒ๐—ฒ๐˜ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ: Avoid volatile functions (e.g., INDIRECT) in big sheets.
โœ… ๐—ฆ๐—ฝ๐—น๐—ถ๐˜ & ๐—™๐—ถ๐˜…: Use Text to Columns to split data quickly; Freeze Panes to keep headers visible.

๐Ÿ“ˆ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ โ€” ๐—ฃ๐—ฟ๐—ฒ๐˜€๐˜€-๐—ฝ๐—น๐—ฎ๐˜† ๐˜๐—ถ๐—ฝ๐˜€
โœ… ๐—ค๐˜‚๐—ฒ๐—ฟ๐˜† ๐—˜๐—ฑ๐—ถ๐˜๐—ผ๐—ฟ ๐—ต๐—ฎ๐ฐ€๐—น๐—ฝ๐—ฒ๐—ฟ: Clean data in Power Query (remove columns, pivot/unpivot) โ€” do heavy transforms here, not in visuals.
โœ… ๐——๐—”๐—ซ ๐˜ƒ๐˜€ ๐—–๐—ผ๐—น๐˜‚๐—บ๐—ป๐˜€: Use DAX measures for aggregations (faster, memory-efficient); use calculated columns only when necessary.
โœ… ๐—•๐—ผ๐—ผ๐—ธ๐—บ๐—ฎ๐—ฟ๐—ธ๐˜€ & ๐—›๐—ถ๐—ฑ๐—ฒ๐—ป ๐—ฃ๐—ฎ๐—ด๐—ฒ๐˜€: Create bookmarks for storytelling and to toggle views for users.
โœ… ๐——๐—ฟ๐—ถ๐—น๐—น๐˜๐—ต๐—ฟ๐—ผ๐˜‚๐—ด๐—ต: Add drillthrough pages so users can click a value and see detailed records โ€” great UX.
โœ… ๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ: Use query folding in Power Query to push transforms to the source (faster).
โœ… ๐—œ๐—ป๐—ฐ๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—น ๐—ฅ๐—ฒ๐—ณ๐—ฟ๐—ฒ๐˜€๐—ต: For large datasets, enable incremental refresh to avoid reloading everything daily.

๐Ÿ› ๏ธ ๐—ฆ๐—ค๐—Ÿ โ€” ๐—–๐—น๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐—›๐—ฎ๐—ฐ๐—ธ๐˜€
โœ… *๐—”๐˜ƒ๐—ผ๐—ถ๐—ฑ ๐—ฆ๐—˜๐—Ÿ๐—˜๐—–๐—ง : Always select only needed columns โ€” reduces IO and speeds queries.
โœ… ๐—จ๐˜€๐—ฒ ๐—Ÿ๐—œ๐— ๐—œ๐—ง / ๐—ง๐—ข๐—ฃ: Test queries with LIMIT 100 or TOP 100 before running full scans.
โœ… ๐—˜๐—ซ๐—ฃ๐—Ÿ๐—”๐—œ๐—ก / ๐—˜๐—ซ๐—ฃ๐—Ÿ๐—”๐—ก ๐—”๐—ก๐—”๐—Ÿ๐—ฌ๐—ญ๐—˜: Run explain plans to find bottlenecks and missing indexes.
โœ… ๐—–๐—ง๐—˜๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฐ๐—น๐—ฒ๐—ฎ๐—ป๐—ฒ๐—ฟ ๐—พ๐˜‚๐—ฒ๐—ฟ๐—ถ๐—ฒ๐˜€: Use WITH (CTE) to break complex logic into readable parts.
โœ… ๐—ช๐—ถ๐—ป๐—ฑ๐—ผ๐˜„ ๐—™๐˜‚๐—ป๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€: Use ROW_NUMBER(), RANK(), SUM() OVER() for top-N, running totals, and rankings โ€” often faster than subqueries.
โœ… ๐—œ๐—ป๐—ฑ๐—ฒ๐˜… ๐—ต๐—ถ๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Index columns used in WHERE, JOIN, ORDER BY โ€” but donโ€™t over-index (slows writes).
โœ… ๐—ฃ๐—ฎ๐—ฟ๐—ฎ๐—บ๐—ฒ๐˜๐—ฒ๐—ฟ๐—ถ๐˜‡๐—ฒ ๐—พ๐˜‚๐—ฒ๐—ฟ๐—ถ๐—ฒ๐˜€: Use parameters or prepared statements to prevent SQL injection and reuse plans.
โœ… ๐—ฆ๐—บ๐—ฎ๐—น๐—น ๐—ฐ๐—ต๐—ฒ๐—ฐ๐—ธ๐˜€: Use EXISTS instead of IN for subquery existence checks on large tables.

๐Ÿค– ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ โ€” ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—›๐—ฎ๐—ฐ๐—ธ๐˜€
โœ… ๐—•๐—ฎ๐˜€๐—ฒ๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น: Always train a simple baseline (mean predictor, logistic regression) โ€” hard to beat!
โœ… ๐—™๐—ฒ๐—ฎ๐˜๐˜‚๐—ฟ๐—ฒ ๐—œ๐—บ๐—ฝ๐—ผ๐—ฟ๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ: Quick feature importance check (tree models) shows where to focus engineering.
โค2๐Ÿ‘1
โœ… ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ถ๐—ป๐—ด: Scale numeric features for algorithms sensitive to magnitude (SVM, KNN, neural nets).
โœ… ๐—–๐—ฟ๐—ผ๐˜€๐˜€-๐˜ƒ๐—ฎ๐—น๐—ถ๐—ฑ๐—ฎ๐˜๐—ฒ: Use k-fold CV to get realistic performance, not a single train/test split.
โœ… ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฃ๐—ถ๐—ฝ๐—ฒ๐—น๐—ถ๐—ป๐—ฒ๐˜€: Put preprocessing + model into pipelines to avoid data leakage and save time.
โœ… ๐—˜๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†: Use SHAP/LIME or simple coefficients to explain model decisions to stakeholders.

โœจ ๐—ค๐˜‚๐—ถ๐—ฐ๐—ธ ๐— ๐—ถ๐˜…-๐—•๐˜‚๐—ด ๐—™๐—ถ๐˜…๐—ฒ๐˜€ & ๐—›๐—ฎ๐—ฐ๐—ธ๐˜€
โœ… ๐——๐—ฎ๐˜๐—ฎ ๐—ถ๐—ป๐—ฐ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐—บ๐—ฎ๐˜๐—ฐ๐—ต๐—ฒ๐˜€ ๐—ท๐—ถ๐˜๐˜๐—ฒ๐—ฟ: Add TRIM() and lowercase conversions to normalize texts before joins.
โœ… ๐—ฃ๐—ฒ๐—ฟ๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ณ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐—ฟ๐˜๐˜€: Cache intermediate results (materialized view or temp table) for dashboards that run slow.
โœ… ๐——๐—ฎ๐˜๐—ฎ ๐—พ๐—ฐ ๐—ฐ๐—ต๐—ฒ๐—ฐ๐—ธ: Quick sanity checks โ€” row counts, null % per column, min/max ranges โ€” do these first.

๐ŸŽฏ ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜ ๐—ช๐—ผ๐—ฟ๐—ธ > ๐—›๐—ฎ๐—ฟ๐—ฑ ๐—ช๐—ผ๐—ฟ๐—ธ!โœจ๏ธ

For Daily Job Updates Follow My Telegram Channel๐Ÿ‘‡

https://t.me/careeralertswithHeena
โค5
๐—ฃ๐—ฎ๐˜† ๐—”๐—ณ๐˜๐—ฒ๐—ฟ ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ - ๐—š๐—ฒ๐˜ ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—ฑ ๐—œ๐—ป ๐—ง๐—ผ๐—ฝ ๐— ๐—ก๐—–๐˜€ ๐Ÿ˜

Curriculum designed and taught by Alumni from IITs & Leading Tech Companies

 Eligibility:- BE/BTech / BCA / BSc

๐ŸŒŸ 2000+ Students Placed
๐Ÿค 500+ Hiring Partners
๐Ÿ’ผ Avg. Rs. 7.4 LPA
๐Ÿš€ 41 LPA Highest Package

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ก๐—ผ๐˜„๐Ÿ‘‡:-

https://pdlink.in/3Jia4Ux

( Hurry Up ๐Ÿƒโ€โ™‚๏ธLimited Slots )
๐Ÿ‘1
๐Ÿ“Š ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€: ๐—ž๐—ฒ๐˜† ๐—ฃ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—น๐—ฒ๐˜€ & ๐—•๐—ฒ๐˜€๐˜ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€

๐—•๐—ฎ๐˜€๐—ถ๐—ฐ๐˜€ & ๐—ฃ๐—ฟ๐—ผ๐—ฐ๐—ฒ๐˜€๐˜€ ๐—ข๐˜ƒ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„

๐Ÿ”น ๐——๐—ฎ๐˜๐—ฎ ๐—Ÿ๐—ถ๐—ณ๐—ฒ๐—ฐ๐˜†๐—ฐ๐—น๐—ฒ:

1. Define the Question / Goal โ€“ Be crystal clear about what youโ€™re trying to find.


2. Collect & Clean Data โ€“ Remove duplicates, fix missing values, standardize formats.


3. Transform & Feature Engineering โ€“ Create new helpful variables.


4. Model / Analyze โ€“ Use statistical methods, machine learning or aggregations.


5. Visualization & Communication โ€“ Present insights clearly to stakeholders.


6. Feedback & Iterate โ€“ Learn, refine, and repeat.

๐Ÿ”น ๐—”๐˜‚๐—ด๐—บ๐—ฒ๐—ป๐˜๐—ฒ๐—ฑ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:
Uses machine learning & NLP to auto-generate insights, reducing human workload.

๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ & ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€

๐Ÿ”— Kaggle Learn (Python, Data Viz, ML)
Hands-on tutorials & micro-courses.
https://www.kaggle.com/learn

๐Ÿ”— Mode Analytics โ€“ SQL for Data Analysis Tutorial
Great for SQL in analytics contexts.
https://mode.com/sql-tutorial/introduction-to-sql/

๐Ÿ”— Microsoft Learn โ€“ Data Analytics Path
A structured free learning path by Microsoft.
https://learn.microsoft.com/en-us/training/paths/data-analytics-microsoft/

๐Ÿ”— CareerFoundry โ€“ Best Free Data Analytics Courses Guide
Good overview & links to multiple free courses.
https://careerfoundry.com/en/blog/data-analytics/free-data-analytics-courses/

๐Ÿ”— Grow with Google โ€“ Data Analytics Certificate
Launch your career with Googleโ€™s data analytics curriculum.
https://grow.google/certificates/data-analytics/

๐—ง๐—ถ๐—ฝ๐˜€ & ๐—ง๐—ฟ๐—ถ๐—ฐ๐—ธ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—”๐—ฑ๐˜ƒ๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€

โœ… ๐—•๐˜‚๐—ถ๐—น๐—ฑ ๐—ฃ๐—ผ๐—ฟ๐˜๐—ณ๐—ผ๐—น๐—ถ๐—ผ ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€: Real datasets, real problems. Use public data from Kaggle or government portals.
โœ… ๐—ง๐—ฒ๐—ฎ๐—ฐ๐—ต ๐—ง๐—ผ ๐—™๐—ถ๐—ป๐—ฒ ๐—ข๐˜๐—ต๐—ฒ๐—ฟ๐˜€: Explaining concepts deepens your understanding.
โœ… ๐—›๐—ฎ๐—ฏ๐—ถ๐˜๐˜‚๐—ฎ๐—น ๐—›๐—ฎ๐—ฐ๐—ธ โ€” ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ต๐—ฒ๐—ฐ๐—ธs ๐—™๐—ถ๐—ฟ๐˜€๐˜: Always inspect min, max, null %, duplicates.
โœ… ๐—Ÿ๐—ฒ๐˜ƒ๐—ฒ๐—ฟ๐—ฎ๐—ด๐—ฒ ๐—–๐—ผ๐—บ๐—บ๐˜‚๐—ป๐—ถ๐˜๐—ถ๐—ฒ๐˜€: Join data meetups, Slack groups, Kaggle forums โ€” learn faster together.
โœ… ๐—ฆ๐—ฐ๐—ฎ๐—น๐—ฒ ๐˜„๐—ถ๐˜๐—ต ๐—”๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ถ๐—ผ๐—ป: Use scripts or pipelines (Python, SQL) rather than manual Excel steps.
โœ… ๐—ค๐—จ๐—œ๐—–๐—ž ๐—ค๐—จ๐—˜๐—ฅ๐—ฌ ๐—–๐—ต๐—ฒ๐—ฐ๐—ธ: Wrap your heavy queries in LIMIT 100 during development to test logic first.

๐—ข๐—ป๐—ฒ ๐—ฃ๐—ผ๐—ถ๐—ป๐˜ ๐—œ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜

๐Ÿ”น ๐—•๐—ฒ๐—ต๐—ฎ๐˜ƒ๐—ถ๐—ผ๐—ฟ๐—ฎ๐—น ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€
Go beyond โ€œwhat happenedโ€ โ€” this branch studies how users behave & why. Useful in e-commerce, apps & web.

๐—œ๐—ณ ๐—ฌ๐—ผ๐˜‚ ๐—ก๐—ฒ๐—ฒ๐—ฑ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐˜€๐˜‚๐—ฐ๐—ต ๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—บ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐—ป๐˜ ๐—ฑ๐—ฎ๐—ถ๐—น๐˜† ๐˜๐—ต๐—ฒ๐—ป ๐—ฟ๐—ฒ๐˜€๐—ฝ๐—ผ๐—ป๐—ฑ ๐˜๐—ผ ๐˜๐—ต๐—ถ๐˜€ ๐—บ๐—ฒ๐˜€๐˜€๐—ฎ๐—ด๐—ฒ ๐Ÿ˜Š

Comment Below If You Liked This Content and was Helpful ๐Ÿ“ฉ๐Ÿ“Œ
โค3๐Ÿ‘1๐Ÿ”ฅ1
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€, ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ & ๐—”๐—œ ๐—ฎ๐—ฟ๐—ฒ ๐—ต๐—ถ๐—ด๐—ต๐—น๐˜† ๐—ฑ๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Learn Live From Top Data Experts

60+ Hiring Drives Every Month

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:- 
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ก๐—ผ๐˜„๐Ÿ‘‡:- 

https://pdlink.in/3J4i7E6

( Hurry Up ๐Ÿƒโ€โ™‚๏ธLimited Slots )
๐Ÿ“ˆ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—ผ๐—ณ ๐—˜๐—ฑ๐—ด๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€: ๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—ณ๐—ถ๐—ป๐—ฑ ๐—ฃ๐—ผ๐˜€๐˜๐—ถ๐˜ƒ๐—ฒ & ๐—ก๐—ฒ๐—ด๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฅ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€๐—ต๐—ถ๐—ฝ๐˜€ ๐—ถ๐—ป ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ

๐Ÿ”น ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—˜๐—ฑ๐—ด๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป?
It refers to correlation values near +1 or โ€“1 โ€” indicating strong positive or negative relationships between two variables. It helps identify which factors move together.

๐Ÿ”น ๐—ช๐—ต๐˜† ๐—ถ๐˜ ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€ ๐—ถ๐—ป ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€
โœ… Find features that really influence your target variable
โœ… Serve as candidates for predictive modeling
โœ… Help in variable reduction & understanding multicollinearity

๐Ÿ”น ๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—–๐—ฎ๐—น๐—ฐ๐˜‚๐—น๐—ฎ๐˜๐—ฒ (๐—ถ๐—ป ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป / ๐—ฃ๐—ฎ๐—ป๐—ฑ๐—ฎ๐˜€)

df[['var1','var2']].corr()

This gives you a correlation matrix.
Or for a single pair:

df['var1'].corr(df['var2'])

๐Ÿ”น ๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ฝ๐—ฟ๐—ฒ๐˜

+1.0 โ†’ perfect positive correlation

โ€“1.0 โ†’ perfect negative correlation

0 or near zero โ†’ little or no linear relation

Very high correlations may imply multicollinearity, which can hurt regression models

๐Ÿ”น ๐—ช๐—ต๐—ฒ๐—ป ๐˜๐—ผ ๐—จ๐˜€๐—ฒ ๐—ฃ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ / ๐—ก๐—ฒ๐—ด๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—–๐—ผ๐—ฟ๐—ฟ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ถ๐—น๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด
โœ… Filter pairs with abs(corr) > 0.7 for strong correlations
โœ… Use heatmaps to visualize many correlations at once
โœ… Drop redundant features with extremely high mutual correlation

๐Ÿ”น ๐—–๐—ฎ๐˜‚๐˜๐—ถ๐—ผ๐—ป:
Correlation โ‰  Causation. Even if two variables move together strongly, one does not necessarily cause the other.

Based On this Content Share your reviews in comments section and answer the poll ๐Ÿ™Œ๐Ÿ“Œ
โค5๐Ÿ‘1๐Ÿ‘1๐Ÿ™1
๐Ÿ” ๐——๐—ฒ๐—ฐ๐—ผ๐—ฑ๐—ถ๐—ป๐—ด ๐—ข๐˜‚๐˜๐—น๐—ถ๐—ฒ๐—ฟ๐˜€ โ€” ๐—ช๐—ต๐˜† ๐—ง๐—ต๐—ฒ๐˜† ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€

๐Ÿ”น ๐—ช๐—ต๐—ฎ๐˜ ๐—ถ๐˜€ ๐—ฎ๐—ป ๐—ข๐˜‚๐˜๐—น๐—ถ๐—ฒ๐—ฟ?
It is a data point that differs significantly from the rest โ€” unusually high or low. Could be valid, error, or an extreme case.

๐Ÿ”น ๐—ช๐—ต๐˜† ๐—–๐—ฎ๐—ฟ๐—ฒ ๐—”๐—ฏ๐—ผ๐˜‚๐˜ ๐—ข๐˜‚๐˜๐—น๐—ถ๐—ฒ๐—ฟ๐˜€?
โœ… They can skew averages & models
โœ… Distort regression lines and parameter estimates
โœ… Hide true patterns when left unchecked
โœ… Sometimes they reveal valuable anomalies (fraud, system errors)

๐Ÿ”น ๐—›๐—ผ๐˜„ ๐—ง๐—ผ ๐——๐—ฒ๐˜๐—ฒ๐—ฐ๐˜ ๐—ง๐—ต๐—ฒ๐—บ

Use boxplots & IQR method (points outside 1.5ร—IQR)

Z-score / standard score (values with |z| > 3)

Scatter plots and visual inspection

Use Mahalanobis distance for multivariate outliers

๐Ÿ”น ๐—ช๐—ต๐—ฎ๐˜ ๐—ง๐—ผ ๐——๐—ผ ๐—ช๐—ถ๐˜๐—ต ๐—–๐—ฎ๐—ป๐—ฑ๐—ถ๐—ฑ๐—ฎ๐˜๐—ฒ๐˜€
โœ… Verify them โ€” is it data entry error or true?
โœ… Transform or cap (winsorize) extreme values
โœ… Drop only if justified
โœ… Use robust models (e.g. median regression) that handle outliers

๐Ÿ’ฌ ๐—™๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚:
๐Ÿ‘‰ Did you find any surprising outliers in your data? What method did you use to handle them? Share below โฌ‡๏ธ
โค3๐Ÿ‘1
๐—™๐˜‚๐—น๐—น๐˜€๐˜๐—ฎ๐—ฐ๐—ธ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—›๐˜†๐—ฑ๐—ฒ๐—ฟ๐—ฎ๐—ฏ๐—ฎ๐—ฑ/๐—ฃ๐˜‚๐—ป๐—ฒ/๐—ก๐—ผ๐—ถ๐—ฑ๐—ฎ๐Ÿ˜

Learn from the Top 1% of the tech industry

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:- 
- 500+ Hiring Partners
- 60+ Hiring Drives
- 100% Placement Assistance

 Eligibility:- BE/BTech / BCA / BSc / MCA / MSc

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ก๐—ผ๐˜„๐Ÿ‘‡:-

๐Ÿ”น Online :- https://pdlink.in/3Jia4Ux

๐Ÿ”น Hyderabad :- https://pdlink.in/3WEWr53

๐Ÿ”น Pune:-  https://pdlink.in/43no9Hb

๐Ÿ”น Noida :- https://pdlink.in/4oqNp7O

Hurry Up ๐Ÿƒโ€โ™‚๏ธ! Limited seats are available.
โค3
๐Ÿ’ฅ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ + ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ = ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ฆ๐˜‚๐—ฐ๐—ฐ๐—ฒ๐˜€๐˜€ ๐Ÿ˜

๐ŸŽ“ Upskill with free certifications
๐Ÿง  Create a professional, ATS-friendly resume
โšก Be ready to land your dream job faster!

๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/48W1Coy

๐—”๐—ง๐—ฆ ๐—™๐—ฟ๐—ถ๐—ฒ๐—ป๐—ฑ๐—น๐˜† ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ :- https://pdlink.in/46PZD3V

๐Ÿ”ฅ Double Your Interview Chances!
โค3
๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ (๐—›๐˜†๐—ฑ/๐—ฃ๐˜‚๐—ป๐—ฒ/๐—ก๐—ผ๐—ถ๐—ฑ๐—ฎ )๐Ÿ˜

Learn from the Top 1% of the data analytics industry

Learn Data Analytics with Hands-on Training, Industry Projects, and 100% Placement Assistance.

 Unlock Opportunities With 500+ Hiring Partners

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ก๐—ผ๐˜„๐Ÿ‘‡:-

๐Ÿ”น Online :- https://pdlink.in/3J4i7E6

๐Ÿ”น Hyderabad :- https://pdlink.in/3VAmsCe

๐Ÿ”น Pune:-  https://pdlink.in/4hsc6yg

๐Ÿ”น Noida :-  https://pdlink.in/3VAkxO2

Hurry Up ๐Ÿƒโ€โ™‚๏ธ! Limited seats are available.
โค1
๐†๐จ๐จ๐ ๐ฅ๐ž ๐ˆ๐ฌ ๐‡๐ข๐ซ๐ข๐ง๐  ๐Ÿ˜

Grab this chance to join Googleโ€™s analytics team! ๐Ÿš€

Role:- Data Analyst (or similar Data Analytics position)

Qualification:- Bachelorโ€™s degree or equivalent practical experience; strong skills in SQL, data visualization, and analytics

Job Location:- Multiple locations globally (including Bengaluru, India)

Salary Package:- โ‚น12 โ€“ 25 LPA (Based on role, experience & location)

๐€๐ฉ๐ฉ๐ฅ๐ฒ ๐๐จ๐ฐ๐Ÿ‘‡

CHECK FOR LINK BELOW๐Ÿ“Œ

Apply before the link expires โœจ

๐ŸŽฏ Interview Questions & Answers for the Google Data Analyst Role

Technical / SQL & Data Manipulation

1๏ธโƒฃ Question:
Write a query to count the number of customers who were upsold (i.e., made more than one purchase).

Answer:

SELECT customer_id, COUNT(order_id) AS total_orders
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > 1;

โœ… This query groups customers and filters those with more than one order โ€” identifying customers who were upsold.

2๏ธโƒฃ Question:
Write a SQL query to compute cumulative sales for each product by date.

Answer:

SELECT
product_id,
order_date,
SUM(sales) OVER (PARTITION BY product_id ORDER BY order_date) AS cumulative_sales
FROM sales_data;

โœ… Uses a window function to calculate running totals of sales by product.

3๏ธโƒฃ Question:
How would you optimise a very slow SQL query joining multiple large tables?

Answer:
โœ… Approach:
โ€ข Use EXPLAIN to analyze query execution plan.
โ€ข Ensure indexes on join keys and filters.
โ€ข Replace SELECT * with only required columns.
โ€ข Consider materialized views or CTEs for reuse.
โ€ข Check data partitioning in big tables.

4๏ธโƒฃ Question:
Given two tables (clicks and conversions), write a query to compute click-through-rate (CTR) and conversion rate for each ad.

Answer:

SELECT
c.ad_id,
COUNT(DISTINCT c.user_id) AS total_clicks,
COUNT(DISTINCT cv.user_id) AS total_conversions,
COUNT(DISTINCT cv.user_id) * 1.0 / COUNT(DISTINCT c.user_id) AS conversion_rate
FROM clicks c
LEFT JOIN conversions cv
ON c.ad_id = cv.ad_id AND c.user_id = cv.user_id
GROUP BY c.ad_id;

โœ… Calculates CTR and conversion rate per ad by joining user-level click and conversion data.

Product / Business Case / Analytics Thinking

5๏ธโƒฃ Question:
How would you measure the success of a new feature (for example, audio chat) introduced on an online marketplace?

Answer:
โœ… Define Key Metrics:
โ€ข Engagement: # of audio chats started, avg duration.
โ€ข Retention: % of users using audio chat repeatedly.
โ€ข Conversion: % of users who completed a transaction after using audio chat.
โœ… Run an A/B test: Compare metrics between feature and control groups.

6๏ธโƒฃ Question:
Explain a scatterplot showing โ€œCompletion Rate vs Video Lengthโ€ for a video platform. What insights might you draw?

Answer:
โœ… Analysis:
โ€ข Negative correlation indicates longer videos โ†’ lower completion rates.
โ€ข Identify โ€œoptimal lengthโ€ range with highest engagement.
โ€ข Look for outliers (short videos with poor completion โ†’ low interest).
โœ… Business Insight: Helps guide ideal video length for creators.

Behavioural / Fit Questions

7๏ธโƒฃ Question:
Describe a data-analysis project you worked on: what were the challenges and how did you overcome them?

Answer:
โœ… Example: โ€œI analyzed user churn data using SQL and Python. The challenge was missing demographic fields. I collaborated with the data engineering team to impute missing values using averages from similar cohorts, improving model accuracy by 12%.โ€

8๏ธโƒฃ Question:
How do you prioritise tasks when working on multiple analytics projects simultaneously?

Answer:
โœ… Answer: โ€œI assess business impact and urgency, align with stakeholders on deadlines, and use Agile methods โ€” maintaining a backlog and weekly sprint goals. I also ensure regular communication to avoid blockers.โ€

9๏ธโƒฃ Question:
Tell us about a time when you received incomplete or conflicting data. What did you do?

Answer:
โœ… Answer: โ€œWhile analyzing marketing data, campaign IDs were missing for 15% of rows. I investigated source logs, validated against CRM data, and applied conditional joins to recover 90% of missing entries before analysis.โ€
๐Ÿ‘1
๐Ÿ”Ÿ Question:
What are your favorite data visualization tools, and how do you decide which one to use?

Answer:
โœ… Answer: โ€œI use Google Data Studio and Power BI for dashboards, and Python (Matplotlib/Seaborn) for exploratory analysis. Choice depends on audience โ€” dashboards for business stakeholders, Jupyter visuals for internal analytics.

๐‚๐ฅ๐ข๐œ๐ค ๐จ๐ง ๐ญ๐ก๐ž ๐‹๐ข๐ง๐ค ๐๐ž๐ฅ๐จ๐ฐ ๐“๐จ ๐€๐ฉ๐ฉ๐ฅ๐ฒ๐Ÿ‘‡

https://t.me/careeralertswithHeena/74
โค1
๐—•๐—ฒ๐—ฐ๐—ผ๐—บ๐—ฒ ๐—ฎ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—™๐˜‚๐—น๐—น๐˜€๐˜๐—ฎ๐—ฐ๐—ธ ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—ฒ๐—ฟ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—ฎ๐˜† ๐—”๐—ณ๐˜๐—ฒ๐—ฟ ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐Ÿ˜

Learn coding from Top Tech Professionals 

Unlock Opportunities With 500+ Hiring Partners

Get an Avg 7.4LPA With 100% Job Assistance

Eligibility :- All Degrees & Backgrounds Eligible

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—ก๐—ผ๐˜„๐Ÿ‘‡:- 

https://pdlink.in/3Jia4Ux

( Hurry Up ๐Ÿƒโ€โ™‚๏ธLimited Slots )
๐Ž๐ฉ๐ญ๐ข๐ฆ๐ฌ๐ฉ๐š๐œ๐ž.๐ข๐ง ๐ข๐ฌ ๐ก๐ข๐ซ๐ข๐ง๐  ๐Ÿ˜

Role: Data Science Intern (Freshers / Students)

Qualifications: UG/PG in Data Science, Computer Science, Statistics, Mathematics โ€” Python, R, SQL, Excel, Machine Learning, Data Visualization skills preferred

Location: Remote (India)

Stipend / Package: โ‚น7,500 โ€“ โ‚น15,000 (Performance-based, Paid Internship)

๐€๐ฉ๐ฉ๐ฅ๐ฒ ๐๐จ๐ฐ(check below)

๐—›๐—ผ๐˜„ ๐˜๐—ผ ๐—”๐—ฝ๐—ฝ๐—น๐˜† โ€“ ๐—ฆ๐˜๐—ฒ๐—ฝ-๐—ฏ๐˜†-๐—ฆ๐˜๐—ฒ๐—ฝ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ

๐—ข๐—ฝ๐—ฒ๐—ป ๐˜๐—ต๐—ฒ ๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ
Click or tap on: https://in.indeed.com/q-data-science-internship-jobs.html

๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ณ๐—ผ๐—ฟ โ€˜Optimspace .in Data Science Internโ€™

If the internship doesn't appear immediately, use the search bar with keywords โ€œOptimspace .in Data Science Internโ€ and select โ€œRemoteโ€ under location.

๐—ฅ๐—ฒ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐˜๐—ต๐—ฒ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ป๐˜€๐—ต๐—ถ๐—ฝ ๐——๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€
Check the job description, skills required, stipend, and eligibility to ensure you match their requirements.

๐—ฃ๐—ฟ๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ
Update your resume, focusing on relevant skills like Python, SQL, Excel, and any analytics projects or coursework youโ€™ve completed.

๐—–๐—น๐—ถ๐—ฐ๐—ธ โ€˜Apply Nowโ€™
Find the โ€˜Apply Nowโ€™ button on the internship listing page and click it.

๐—™๐—ถ๐—น๐—น ๐—ข๐˜‚๐˜ ๐˜๐—ต๐—ฒ ๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—™๐—ผ๐—ฟ๐—บ
Enter your personal information, upload your resume (PDF preferred), and add a cover letter if requested.

๐—ฆ๐˜‚๐—ฏ๐—บ๐—ถ๐˜ ๐˜๐—ต๐—ฒ ๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Double check your entries, then submit the application.

๐—ง๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—”๐—ฝ๐—ฝ๐—น๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป
Log in to Indeed to check the status of your application and watch for updates or messages from the employer.

Check out this link to apply for this internship ๐Ÿ“Œ

https://t.me/careeralertswithHeena/75
โค1
๐Ÿฆ„ โšช ๐—™๐—ฅ๐—ข๐—  ๐—ก๐—ข๐—ฉ๐—˜๐— ๐—•๐—˜๐—ฅ ๐Ÿฐ โ€” ๐—–๐—›๐—”๐—ง๐—š๐—ฃ๐—ง ๐—š๐—ข ๐—™๐—ข๐—ฅ ๐—™๐—ฅ๐—˜๐—˜ ๐—œ๐—ก ๐—œ๐—ก๐——๐—œ๐—”! ๐Ÿ‡ฎ๐Ÿ‡ณ

Yes, you read that right! OpenAI is giving India exclusive early access to premium ChatGPT Go features โ€” absolutely FREE, starting November 4th! ๐ŸŽ‰
No Plus plan, no payment, no hidden cost. Just log in and enjoy upgraded ChatGPT power ๐Ÿ’ฅ

โšช ๐—ช๐—ต๐—ฎ๐˜โ€™๐˜€ ๐—œ๐—ป๐—ฐ๐—น๐˜‚๐—ฑ๐—ฒ๐—ฑ:
โšก Higher daily message limits
๐ŸŽจ More image generations & file uploads
๐Ÿง  Longer memory for smarter, context-aware replies
๐Ÿ’ฌ GPT-4-level capabilities (rolling out gradually across users)

โšช ๐—›๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐—›๐—ผ๐˜„ ๐—ง๐—ผ ๐—š๐—ฒ๐˜ ๐—–๐—ต๐—ฎ๐˜๐—š๐—ฃ๐—ง ๐—™๐—ฟ๐—ฒ๐—ฒ (๐—ฆ๐—ง๐—˜๐—ฃ ๐—•๐—ฌ ๐—ฆ๐—ง๐—˜๐—ฃ):
1๏ธโƒฃ Update or Install ChatGPT App โ€“ Go to Play Store / App Store and make sure youโ€™re on the latest version. (You can also visit chat.openai.com๏ฟผ).
2๏ธโƒฃ Sign In or Create Account โ€“ Use your email or Google/Apple login. Make sure your region is set to India.
3๏ธโƒฃ Watch for โ€œChatGPT Go Free for a Yearโ€ Banner โ€“ Once you log in after Nov 4, youโ€™ll see a pop-up or banner offering free ChatGPT Go access.
4๏ธโƒฃ Click โ€œActivateโ€ or โ€œClaim Offerโ€ โ€“ Follow the on-screen steps; no payment info is needed.
5๏ธโƒฃ Enjoy Premium Features โ€“ Youโ€™ll automatically get access to GPT-4-level tools, image generation, and longer chats for 1 full year!
6๏ธโƒฃ Check Settings โ†’ My Plan โ€“ Confirm that your plan shows ChatGPT Go (Free for 1 Year).

โšช ๐—ช๐—ต๐—ฎ๐˜ ๐—ง๐—ผ ๐——๐—ผ ๐—œ๐—ณ ๐—ฌ๐—ผ๐˜‚ ๐——๐—ผ๐—ปโ€™๐˜ ๐—ฆ๐—ฒ๐—ฒ ๐—ง๐—ต๐—ฒ ๐—ข๐—ณ๐—ณ๐—ฒ๐—ฟ:
๐Ÿ”น Log out & back in after Nov 4
๐Ÿ”น Update your app manually
๐Ÿ”น Try the web version
๐Ÿ”น Rollout is gradual โ€” check again after a few hours

โšช ๐—ช๐—ต๐˜† ๐—œ๐˜ ๐— ๐—ฎ๐˜๐˜๐—ฒ๐—ฟ๐˜€:
India becomes one of the first countries in the world to get this free premium rollout ๐ŸŒ
Perfect for students, data professionals, creators, and tech learners who use AI daily.

โœจ ๐—ค๐˜‚๐—ถ๐—ฐ๐—ธ ๐—ง๐—ถ๐—ฝ:
Comment โ€œGOโ€ ๐Ÿ‘‡๐Ÿผ and Iโ€™ll share the early access link + activation guide directly in your DMs or broadcast channel ๐Ÿ”—

๐Ÿ” ๐—ง๐—ฎ๐—ด๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฃ๐—ผ๐˜€๐˜:
โ€ข ChatGPT Free India 2025
โ€ข OpenAI Free Access November 4
โ€ข ChatGPT Go Activation
โ€ข AI Tools for Students & Professionals
โ€ข Data & AI for Everyone
โค5
๐Ÿšจ๐‹๐š๐ฌ๐ญ ๐‚๐ก๐š๐ง๐œ๐ž ๐ญ๐จ ๐†๐ž๐ญ ๐†๐จ๐ฏ๐ž๐ซ๐ง๐ฆ๐ž๐ง๐ญ ๐๐š๐ข๐ ๐ˆ๐ง๐ญ๐ž๐ซ๐ง๐ฌ๐ก๐ข๐ฉ๐Ÿ˜

Hereโ€™s your golden opportunity to earn โ‚น40,000 per month while gaining real-world experience through an official Government Internship Program ๐Ÿ’ผ

โณ Deadline Extended till 1st November 2025 โ€” Donโ€™t miss this final chance to apply!

๐Ÿ“… Internship Duration: 6 Months
๐Ÿ’ฐ Stipend: โ‚น40,000 per month

๐Ÿ’ป Domains Available:
โ€ข Data Science
โ€ข Software Development
โ€ข Cybersecurity
โ€ข Product Management
โ€ข UI/UX Design

โœจ Youโ€™ll Also Get:
โœ… Mentorship from Industry Experts
โœ… Hands-on Project Experience
โœ… Certificate of Completion from an Official Government Platform

๐ŸŽ“ This internship is 100% legit, designed to help students and freshers build experience + income while studying!

โš ๏ธ Registration Closes Soon!

or access it directly here ๐Ÿ‘‰ https://www.bharatdigital.io/fellowship
โค2๐Ÿ™1
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—™๐˜‚๐—น๐—น๐˜€๐˜๐—ฎ๐—ฐ๐—ธ๐——๐—ฒ๐˜ƒ๐—ฒ๐—น๐—ผ๐—ฝ๐—บ๐—ฒ๐—ป๐˜๐Ÿ˜

Build  Full Stack Skills That Crack Product-Based Companies

- Break into the Tech industry as a Full-stack developer with the right guidance.

Eligibility :- Working Professionals & Graduates 

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4nwSPwU

Date :- November 02 , 2025  Time:-7:00 PM
๐Ÿ‘ ๐ˆ๐ง๐ญ๐ž๐ซ๐ง๐ฌ๐ก๐ข๐ฉ ๐Ž๐ฉ๐ž๐ง๐ข๐ง๐ ๐ฌ ๐€๐ฉ๐ฉ๐ฅ๐ฒ ๐›๐ž๐Ÿ๐จ๐ซ๐ž ๐ข๐ญ ๐ž๐ฑ๐ฉ๐ข๐ซ๐ž๐ฌ๐Ÿ˜

๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ฎ๐˜€๐˜†๐˜€ ๐Ÿ“Š
Role:- Data Analytics Intern
Location:- Work From Home (India)
Qualification:- Any graduate / fresher
Salary Package:- โ‚น10,000 โ€“ โ‚น20,000 / month (approx)

๐—”๐—บ๐—ฟ๐—ฎ๐˜๐—ฎ ๐Ÿ“Š
Role:- Data Analytics Intern
Location:- Work From Home
Qualification:- Fresher / Student
Salary Package:- โ‚น15,000 / โ‚น25,000 month (estimated)

๐—ž๐—ผ๐—ฟ๐—ฒ๐˜€ ๐Ÿ“Š
Role:- Digital Transformation / Data Analytics Intern
Location:- Mumbai, India
Qualification:- Bachelorโ€™s degree / MBA / Data Analytics background
Salary Package:- โ‚น8,000 โ€“ โ‚น12,000 / month

๐Ÿ‘‰ ๐…๐จ๐ซ ๐ฆ๐จ๐ซ๐ž ๐ฃ๐จ๐› ๐ฎ๐ฉ๐๐š๐ญ๐ž๐ฌ ๐š๐ง๐ ๐๐ž๐ญ๐š๐ข๐ฅ๐ฌ, ๐ฏ๐ข๐ฌ๐ข๐ญ ๐ฆ๐ฒ ๐‰๐จ๐›-๐”๐ฉ๐๐š๐ญ๐ž๐ฌ ๐‚๐ก๐š๐ง๐ง๐ž๐ฅ:
https://t.me/careeralertswithHeena/78 ๐Ÿ‘ˆ(Click Here to Apply)๐Ÿ“Œ

Step-by-Step: How to apply๐Ÿ“๐Ÿง‘โ€๐Ÿ’ป

1. Open the apply link โ€” click the direct link in the post (Internshala link opens the internship page).
2. Read full listing โ€” check duration, stipend, responsibilities, eligibility, start date.
3. Prepare your resume (1 page) โ€” highlight: SQL, Excel, Power BI, Python, projects, and any coursework. Filename: Firstname_Lastname_Resume.pdf.
4. Write a 2-3 line cover message (if thereโ€™s a form box) โ€” example: โ€œHi, Iโ€™m Ayesha โ€” a fresher with hands-on SQL & Power BI. Iโ€™m excited to intern at [Company] and contribute to analytics projects.โ€
5. Sign in / Create account โ€” Internshala requires login. Use the email you monitor.
6. Fill apply form carefully โ€” attach resume, add academic details, answer screening questions honestly. Paste your short cover message if thereโ€™s a message box.
7. Submit & note confirmation โ€” screenshot the confirmation or email. Save the internship URL and submission date.
8. Follow up after 7โ€“10 days โ€” if contact details are listed, send a polite follow-up message: short, 1โ€“2 lines reaffirming interest and availability.
9. Prepare for interview โ€” review SQL basics (joins, group by, window functions), Excel shortcuts & formulas, Power BI basics (data model, measures), and one small project to discuss.
10. Stay organized โ€” keep a Google Sheet of: Company | Role | Link | Applied on | Status | Notes.โœ…๏ธ
โค4