How do you prefer to learn new Data Skills?
Anonymous Poll
49%
Youtube Tutorials๐ฅ๏ธ
16%
Online Courses ๐
33%
Practice Projects ๐ป
2%
Reading Blogs ๐
โค1
What time do you usually code or Practice SQL?
You can comment Your opinion ๐
You can comment Your opinion ๐
Anonymous Poll
26%
Morning ๐
14%
Afternoon โ๏ธ
34%
Evening ๐
26%
Late Night๐
๐ฅ ๐๐๐ฒ๐ฟ๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ ๐ ๐๐๐ ๐๐ป๐ผ๐ ๐ง๐ต๐ถ๐!๐
Want to level up in Data Analytics, SQL, Excel, Power BI & Data Science without burning out?
Here are some ๐ฒ๐ฎ๐๐ ๐ต๐ฎ๐ฐ๐ธ๐ & ๐ฝ๐ฟ๐ผ ๐๐ฟ๐ถ๐ฐ๐ธ๐ every analyst should know ๐
๐งญ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ โ ๐ฆ๐บ๐ฎ๐ฟ๐ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ๐
โ ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ถ๐๐ต ๐ฎ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป: Always define the business question first โ every analysis should answer one clear question.
โ ๐ฆ๐ฎ๐บ๐ฝ๐น๐ฒ ๐๐ถ๐ฟ๐๐: Work on a representative sample before running heavy queries on full datasets. Saves time and cost.
โ ๐ฉ๐ถ๐๐๐ฎ๐น๐ถ๐๐ฒ ๐๐ฎ๐ฟ๐น๐: Plot early โ charts reveal patterns and oddities faster than tables.
โ ๐ฅ๐ฒ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐ถ๐ฏ๐ถ๐น๐ถ๐๐: Keep scripts/notebooks with comments so results can be repeated and audited.
โ ๐๐๐๐ผ๐บ๐ฎ๐๐ฒ ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐๐: Schedule daily/weekly exports for recurring dashboards โ frees up time for deep work.
โ ๐ฉ๐ฒ๐ฟ๐๐ถ๐ผ๐ป ๐ฐ๐ผ๐ป๐๐ฟ๐ผ๐น: Save SQL/notebook changes in Git โ small habit that prevents big regressions.
๐ ๐๐ ๐ฐ๐ฒ๐น โ ๐ฆ๐ฝ๐ฒ๐ฒ๐ฑ ๐ต๐ฎ๐ฐ๐ธ๐
โ ๐๐น๐ฎ๐๐ต ๐๐ถ๐น๐น: Start typing a pattern (e.g., names) and press Ctrl+E to auto-fill โ massive time saver.
โ ๐ฃ๐ถ๐๐ผ๐ ๐ง๐ฎ๐ฏ๐น๐ฒ ๐ถ๐ป ๐ฎ ๐ฐ๐น๐ถ๐ฐ๐ธ๐: Select data โ Alt + N + V (or Insert โ PivotTable) to build summaries fast.
โ ๐๐ก๐๐๐ซ + ๐ ๐๐ง๐๐ (๐ถ๐ป๐๐๐ฒ๐ฎ๐ฑ ๐ผ๐ณ ๐ฉ๐๐ข๐ข๐๐จ๐ฃ): More flexible and faster for large sheets.
โ ๐ฆ๐ต๐ผ๐ฟ๐๐ฐ๐๐๐: Ctrl+; (insert date), Ctrl+Shift+L (toggle filters), Alt+Enter (line break in cell).
โ ๐๐ผ๐ฟ๐บ๐๐น๐ฎ ๐ฟ๐ฒ๐ฎ๐ฑ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐: Use Named Ranges instead of raw cell refs for clarity.
โ ๐๐๐๐ฅ๐ฅ๐ข๐ฅ: Wrap tricky formulas with IFERROR(formula, "โ") to hide ugly errors.
โ ๐ฆ๐ฝ๐ฟ๐ฒ๐ฎ๐ฑ๐๐ต๐ฒ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ: Avoid volatile functions (e.g., INDIRECT) in big sheets.
โ ๐ฆ๐ฝ๐น๐ถ๐ & ๐๐ถ๐ : Use Text to Columns to split data quickly; Freeze Panes to keep headers visible.
๐ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ โ ๐ฃ๐ฟ๐ฒ๐๐-๐ฝ๐น๐ฎ๐ ๐๐ถ๐ฝ๐
โ ๐ค๐๐ฒ๐ฟ๐ ๐๐ฑ๐ถ๐๐ผ๐ฟ ๐ต๐ฎ๐ฐ๐น๐ฝ๐ฒ๐ฟ: Clean data in Power Query (remove columns, pivot/unpivot) โ do heavy transforms here, not in visuals.
โ ๐๐๐ซ ๐๐ ๐๐ผ๐น๐๐บ๐ป๐: Use DAX measures for aggregations (faster, memory-efficient); use calculated columns only when necessary.
โ ๐๐ผ๐ผ๐ธ๐บ๐ฎ๐ฟ๐ธ๐ & ๐๐ถ๐ฑ๐ฒ๐ป ๐ฃ๐ฎ๐ด๐ฒ๐: Create bookmarks for storytelling and to toggle views for users.
โ ๐๐ฟ๐ถ๐น๐น๐๐ต๐ฟ๐ผ๐๐ด๐ต: Add drillthrough pages so users can click a value and see detailed records โ great UX.
โ ๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ: Use query folding in Power Query to push transforms to the source (faster).
โ ๐๐ป๐ฐ๐ฟ๐ฒ๐บ๐ฒ๐ป๐๐ฎ๐น ๐ฅ๐ฒ๐ณ๐ฟ๐ฒ๐๐ต: For large datasets, enable incremental refresh to avoid reloading everything daily.
๐ ๏ธ ๐ฆ๐ค๐ โ ๐๐น๐ฒ๐๐ฒ๐ฟ ๐๐ฎ๐ฐ๐ธ๐
โ *๐๐๐ผ๐ถ๐ฑ ๐ฆ๐๐๐๐๐ง : Always select only needed columns โ reduces IO and speeds queries.
โ ๐จ๐๐ฒ ๐๐๐ ๐๐ง / ๐ง๐ข๐ฃ: Test queries with LIMIT 100 or TOP 100 before running full scans.
โ ๐๐ซ๐ฃ๐๐๐๐ก / ๐๐ซ๐ฃ๐๐๐ก ๐๐ก๐๐๐ฌ๐ญ๐: Run explain plans to find bottlenecks and missing indexes.
โ ๐๐ง๐๐ ๐ณ๐ผ๐ฟ ๐ฐ๐น๐ฒ๐ฎ๐ป๐ฒ๐ฟ ๐พ๐๐ฒ๐ฟ๐ถ๐ฒ๐: Use WITH (CTE) to break complex logic into readable parts.
โ ๐ช๐ถ๐ป๐ฑ๐ผ๐ ๐๐๐ป๐ฐ๐๐ถ๐ผ๐ป๐: Use ROW_NUMBER(), RANK(), SUM() OVER() for top-N, running totals, and rankings โ often faster than subqueries.
โ ๐๐ป๐ฑ๐ฒ๐ ๐ต๐ถ๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป: Index columns used in WHERE, JOIN, ORDER BY โ but donโt over-index (slows writes).
โ ๐ฃ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ๐ถ๐๐ฒ ๐พ๐๐ฒ๐ฟ๐ถ๐ฒ๐: Use parameters or prepared statements to prevent SQL injection and reuse plans.
โ ๐ฆ๐บ๐ฎ๐น๐น ๐ฐ๐ต๐ฒ๐ฐ๐ธ๐: Use EXISTS instead of IN for subquery existence checks on large tables.
๐ค ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ โ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฎ๐น ๐๐ฎ๐ฐ๐ธ๐
โ ๐๐ฎ๐๐ฒ๐น๐ถ๐ป๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น: Always train a simple baseline (mean predictor, logistic regression) โ hard to beat!
โ ๐๐ฒ๐ฎ๐๐๐ฟ๐ฒ ๐๐บ๐ฝ๐ผ๐ฟ๐๐ฎ๐ป๐ฐ๐ฒ: Quick feature importance check (tree models) shows where to focus engineering.
Want to level up in Data Analytics, SQL, Excel, Power BI & Data Science without burning out?
Here are some ๐ฒ๐ฎ๐๐ ๐ต๐ฎ๐ฐ๐ธ๐ & ๐ฝ๐ฟ๐ผ ๐๐ฟ๐ถ๐ฐ๐ธ๐ every analyst should know ๐
๐งญ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ โ ๐ฆ๐บ๐ฎ๐ฟ๐ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ๐
โ ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ถ๐๐ต ๐ฎ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป: Always define the business question first โ every analysis should answer one clear question.
โ ๐ฆ๐ฎ๐บ๐ฝ๐น๐ฒ ๐๐ถ๐ฟ๐๐: Work on a representative sample before running heavy queries on full datasets. Saves time and cost.
โ ๐ฉ๐ถ๐๐๐ฎ๐น๐ถ๐๐ฒ ๐๐ฎ๐ฟ๐น๐: Plot early โ charts reveal patterns and oddities faster than tables.
โ ๐ฅ๐ฒ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐ถ๐ฏ๐ถ๐น๐ถ๐๐: Keep scripts/notebooks with comments so results can be repeated and audited.
โ ๐๐๐๐ผ๐บ๐ฎ๐๐ฒ ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐๐: Schedule daily/weekly exports for recurring dashboards โ frees up time for deep work.
โ ๐ฉ๐ฒ๐ฟ๐๐ถ๐ผ๐ป ๐ฐ๐ผ๐ป๐๐ฟ๐ผ๐น: Save SQL/notebook changes in Git โ small habit that prevents big regressions.
๐ ๐๐ ๐ฐ๐ฒ๐น โ ๐ฆ๐ฝ๐ฒ๐ฒ๐ฑ ๐ต๐ฎ๐ฐ๐ธ๐
โ ๐๐น๐ฎ๐๐ต ๐๐ถ๐น๐น: Start typing a pattern (e.g., names) and press Ctrl+E to auto-fill โ massive time saver.
โ ๐ฃ๐ถ๐๐ผ๐ ๐ง๐ฎ๐ฏ๐น๐ฒ ๐ถ๐ป ๐ฎ ๐ฐ๐น๐ถ๐ฐ๐ธ๐: Select data โ Alt + N + V (or Insert โ PivotTable) to build summaries fast.
โ ๐๐ก๐๐๐ซ + ๐ ๐๐ง๐๐ (๐ถ๐ป๐๐๐ฒ๐ฎ๐ฑ ๐ผ๐ณ ๐ฉ๐๐ข๐ข๐๐จ๐ฃ): More flexible and faster for large sheets.
โ ๐ฆ๐ต๐ผ๐ฟ๐๐ฐ๐๐๐: Ctrl+; (insert date), Ctrl+Shift+L (toggle filters), Alt+Enter (line break in cell).
โ ๐๐ผ๐ฟ๐บ๐๐น๐ฎ ๐ฟ๐ฒ๐ฎ๐ฑ๐ฎ๐ฏ๐ถ๐น๐ถ๐๐: Use Named Ranges instead of raw cell refs for clarity.
โ ๐๐๐๐ฅ๐ฅ๐ข๐ฅ: Wrap tricky formulas with IFERROR(formula, "โ") to hide ugly errors.
โ ๐ฆ๐ฝ๐ฟ๐ฒ๐ฎ๐ฑ๐๐ต๐ฒ๐ฒ๐ ๐ฝ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ: Avoid volatile functions (e.g., INDIRECT) in big sheets.
โ ๐ฆ๐ฝ๐น๐ถ๐ & ๐๐ถ๐ : Use Text to Columns to split data quickly; Freeze Panes to keep headers visible.
๐ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐๐ โ ๐ฃ๐ฟ๐ฒ๐๐-๐ฝ๐น๐ฎ๐ ๐๐ถ๐ฝ๐
โ ๐ค๐๐ฒ๐ฟ๐ ๐๐ฑ๐ถ๐๐ผ๐ฟ ๐ต๐ฎ๐ฐ๐น๐ฝ๐ฒ๐ฟ: Clean data in Power Query (remove columns, pivot/unpivot) โ do heavy transforms here, not in visuals.
โ ๐๐๐ซ ๐๐ ๐๐ผ๐น๐๐บ๐ป๐: Use DAX measures for aggregations (faster, memory-efficient); use calculated columns only when necessary.
โ ๐๐ผ๐ผ๐ธ๐บ๐ฎ๐ฟ๐ธ๐ & ๐๐ถ๐ฑ๐ฒ๐ป ๐ฃ๐ฎ๐ด๐ฒ๐: Create bookmarks for storytelling and to toggle views for users.
โ ๐๐ฟ๐ถ๐น๐น๐๐ต๐ฟ๐ผ๐๐ด๐ต: Add drillthrough pages so users can click a value and see detailed records โ great UX.
โ ๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ: Use query folding in Power Query to push transforms to the source (faster).
โ ๐๐ป๐ฐ๐ฟ๐ฒ๐บ๐ฒ๐ป๐๐ฎ๐น ๐ฅ๐ฒ๐ณ๐ฟ๐ฒ๐๐ต: For large datasets, enable incremental refresh to avoid reloading everything daily.
๐ ๏ธ ๐ฆ๐ค๐ โ ๐๐น๐ฒ๐๐ฒ๐ฟ ๐๐ฎ๐ฐ๐ธ๐
โ *๐๐๐ผ๐ถ๐ฑ ๐ฆ๐๐๐๐๐ง : Always select only needed columns โ reduces IO and speeds queries.
โ ๐จ๐๐ฒ ๐๐๐ ๐๐ง / ๐ง๐ข๐ฃ: Test queries with LIMIT 100 or TOP 100 before running full scans.
โ ๐๐ซ๐ฃ๐๐๐๐ก / ๐๐ซ๐ฃ๐๐๐ก ๐๐ก๐๐๐ฌ๐ญ๐: Run explain plans to find bottlenecks and missing indexes.
โ ๐๐ง๐๐ ๐ณ๐ผ๐ฟ ๐ฐ๐น๐ฒ๐ฎ๐ป๐ฒ๐ฟ ๐พ๐๐ฒ๐ฟ๐ถ๐ฒ๐: Use WITH (CTE) to break complex logic into readable parts.
โ ๐ช๐ถ๐ป๐ฑ๐ผ๐ ๐๐๐ป๐ฐ๐๐ถ๐ผ๐ป๐: Use ROW_NUMBER(), RANK(), SUM() OVER() for top-N, running totals, and rankings โ often faster than subqueries.
โ ๐๐ป๐ฑ๐ฒ๐ ๐ต๐ถ๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป: Index columns used in WHERE, JOIN, ORDER BY โ but donโt over-index (slows writes).
โ ๐ฃ๐ฎ๐ฟ๐ฎ๐บ๐ฒ๐๐ฒ๐ฟ๐ถ๐๐ฒ ๐พ๐๐ฒ๐ฟ๐ถ๐ฒ๐: Use parameters or prepared statements to prevent SQL injection and reuse plans.
โ ๐ฆ๐บ๐ฎ๐น๐น ๐ฐ๐ต๐ฒ๐ฐ๐ธ๐: Use EXISTS instead of IN for subquery existence checks on large tables.
๐ค ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ โ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฎ๐น ๐๐ฎ๐ฐ๐ธ๐
โ ๐๐ฎ๐๐ฒ๐น๐ถ๐ป๐ฒ ๐ ๐ผ๐ฑ๐ฒ๐น: Always train a simple baseline (mean predictor, logistic regression) โ hard to beat!
โ ๐๐ฒ๐ฎ๐๐๐ฟ๐ฒ ๐๐บ๐ฝ๐ผ๐ฟ๐๐ฎ๐ป๐ฐ๐ฒ: Quick feature importance check (tree models) shows where to focus engineering.
โค2๐1
โ
๐ฆ๐ฐ๐ฎ๐น๐ถ๐ป๐ด: Scale numeric features for algorithms sensitive to magnitude (SVM, KNN, neural nets).
โ ๐๐ฟ๐ผ๐๐-๐๐ฎ๐น๐ถ๐ฑ๐ฎ๐๐ฒ: Use k-fold CV to get realistic performance, not a single train/test split.
โ ๐ ๐ผ๐ฑ๐ฒ๐น ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ๐: Put preprocessing + model into pipelines to avoid data leakage and save time.
โ ๐๐ ๐ฝ๐น๐ฎ๐ถ๐ป๐ฎ๐ฏ๐ถ๐น๐ถ๐๐: Use SHAP/LIME or simple coefficients to explain model decisions to stakeholders.
โจ ๐ค๐๐ถ๐ฐ๐ธ ๐ ๐ถ๐ -๐๐๐ด ๐๐ถ๐ ๐ฒ๐ & ๐๐ฎ๐ฐ๐ธ๐
โ ๐๐ฎ๐๐ฎ ๐ถ๐ป๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐บ๐ฎ๐๐ฐ๐ต๐ฒ๐ ๐ท๐ถ๐๐๐ฒ๐ฟ: Add TRIM() and lowercase conversions to normalize texts before joins.
โ ๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐๐: Cache intermediate results (materialized view or temp table) for dashboards that run slow.
โ ๐๐ฎ๐๐ฎ ๐พ๐ฐ ๐ฐ๐ต๐ฒ๐ฐ๐ธ: Quick sanity checks โ row counts, null % per column, min/max ranges โ do these first.
๐ฏ ๐ฆ๐บ๐ฎ๐ฟ๐ ๐ช๐ผ๐ฟ๐ธ > ๐๐ฎ๐ฟ๐ฑ ๐ช๐ผ๐ฟ๐ธ!โจ๏ธ
For Daily Job Updates Follow My Telegram Channel๐
https://t.me/careeralertswithHeena
โ ๐๐ฟ๐ผ๐๐-๐๐ฎ๐น๐ถ๐ฑ๐ฎ๐๐ฒ: Use k-fold CV to get realistic performance, not a single train/test split.
โ ๐ ๐ผ๐ฑ๐ฒ๐น ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ๐: Put preprocessing + model into pipelines to avoid data leakage and save time.
โ ๐๐ ๐ฝ๐น๐ฎ๐ถ๐ป๐ฎ๐ฏ๐ถ๐น๐ถ๐๐: Use SHAP/LIME or simple coefficients to explain model decisions to stakeholders.
โจ ๐ค๐๐ถ๐ฐ๐ธ ๐ ๐ถ๐ -๐๐๐ด ๐๐ถ๐ ๐ฒ๐ & ๐๐ฎ๐ฐ๐ธ๐
โ ๐๐ฎ๐๐ฎ ๐ถ๐ป๐ฐ๐ผ๐บ๐ถ๐ป๐ด ๐บ๐ฎ๐๐ฐ๐ต๐ฒ๐ ๐ท๐ถ๐๐๐ฒ๐ฟ: Add TRIM() and lowercase conversions to normalize texts before joins.
โ ๐ฃ๐ฒ๐ฟ๐ณ๐ผ๐ฟ๐บ๐ฎ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐ฟ๐ฒ๐ฝ๐ผ๐ฟ๐๐: Cache intermediate results (materialized view or temp table) for dashboards that run slow.
โ ๐๐ฎ๐๐ฎ ๐พ๐ฐ ๐ฐ๐ต๐ฒ๐ฐ๐ธ: Quick sanity checks โ row counts, null % per column, min/max ranges โ do these first.
๐ฏ ๐ฆ๐บ๐ฎ๐ฟ๐ ๐ช๐ผ๐ฟ๐ธ > ๐๐ฎ๐ฟ๐ฑ ๐ช๐ผ๐ฟ๐ธ!โจ๏ธ
For Daily Job Updates Follow My Telegram Channel๐
https://t.me/careeralertswithHeena
โค5
๐ฃ๐ฎ๐ ๐๐ณ๐๐ฒ๐ฟ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ - ๐๐ฒ๐ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐ฑ ๐๐ป ๐ง๐ผ๐ฝ ๐ ๐ก๐๐ ๐
Curriculum designed and taught by Alumni from IITs & Leading Tech Companies
Eligibility:- BE/BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
https://pdlink.in/3Jia4Ux
( Hurry Up ๐โโ๏ธLimited Slots )
Curriculum designed and taught by Alumni from IITs & Leading Tech Companies
Eligibility:- BE/BTech / BCA / BSc
๐ 2000+ Students Placed
๐ค 500+ Hiring Partners
๐ผ Avg. Rs. 7.4 LPA
๐ 41 LPA Highest Package
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
https://pdlink.in/3Jia4Ux
( Hurry Up ๐โโ๏ธLimited Slots )
๐1
๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐: ๐๐ฒ๐ ๐ฃ๐ฟ๐ถ๐ป๐ฐ๐ถ๐ฝ๐น๐ฒ๐ & ๐๐ฒ๐๐ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐
๐๐ฎ๐๐ถ๐ฐ๐ & ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐ ๐ข๐๐ฒ๐ฟ๐๐ถ๐ฒ๐
๐น ๐๐ฎ๐๐ฎ ๐๐ถ๐ณ๐ฒ๐ฐ๐๐ฐ๐น๐ฒ:
1. Define the Question / Goal โ Be crystal clear about what youโre trying to find.
2. Collect & Clean Data โ Remove duplicates, fix missing values, standardize formats.
3. Transform & Feature Engineering โ Create new helpful variables.
4. Model / Analyze โ Use statistical methods, machine learning or aggregations.
5. Visualization & Communication โ Present insights clearly to stakeholders.
6. Feedback & Iterate โ Learn, refine, and repeat.
๐น ๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:
Uses machine learning & NLP to auto-generate insights, reducing human workload.
๐ ๐๐๐-๐๐ป๐ผ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ & ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐
๐ Kaggle Learn (Python, Data Viz, ML)
Hands-on tutorials & micro-courses.
https://www.kaggle.com/learn
๐ Mode Analytics โ SQL for Data Analysis Tutorial
Great for SQL in analytics contexts.
https://mode.com/sql-tutorial/introduction-to-sql/
๐ Microsoft Learn โ Data Analytics Path
A structured free learning path by Microsoft.
https://learn.microsoft.com/en-us/training/paths/data-analytics-microsoft/
๐ CareerFoundry โ Best Free Data Analytics Courses Guide
Good overview & links to multiple free courses.
https://careerfoundry.com/en/blog/data-analytics/free-data-analytics-courses/
๐ Grow with Google โ Data Analytics Certificate
Launch your career with Googleโs data analytics curriculum.
https://grow.google/certificates/data-analytics/
๐ง๐ถ๐ฝ๐ & ๐ง๐ฟ๐ถ๐ฐ๐ธ๐ ๐ง๐ต๐ฎ๐ ๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐ธ๐ถ๐น๐น๐
โ ๐๐๐ถ๐น๐ฑ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐: Real datasets, real problems. Use public data from Kaggle or government portals.
โ ๐ง๐ฒ๐ฎ๐ฐ๐ต ๐ง๐ผ ๐๐ถ๐ป๐ฒ ๐ข๐๐ต๐ฒ๐ฟ๐: Explaining concepts deepens your understanding.
โ ๐๐ฎ๐ฏ๐ถ๐๐๐ฎ๐น ๐๐ฎ๐ฐ๐ธ โ ๐๐ฎ๐๐ฎ ๐๐ต๐ฒ๐ฐ๐ธs ๐๐ถ๐ฟ๐๐: Always inspect min, max, null %, duplicates.
โ ๐๐ฒ๐๐ฒ๐ฟ๐ฎ๐ด๐ฒ ๐๐ผ๐บ๐บ๐๐ป๐ถ๐๐ถ๐ฒ๐: Join data meetups, Slack groups, Kaggle forums โ learn faster together.
โ ๐ฆ๐ฐ๐ฎ๐น๐ฒ ๐๐ถ๐๐ต ๐๐๐๐ผ๐บ๐ฎ๐๐ถ๐ผ๐ป: Use scripts or pipelines (Python, SQL) rather than manual Excel steps.
โ ๐ค๐จ๐๐๐ ๐ค๐จ๐๐ฅ๐ฌ ๐๐ต๐ฒ๐ฐ๐ธ: Wrap your heavy queries in LIMIT 100 during development to test logic first.
๐ข๐ป๐ฒ ๐ฃ๐ผ๐ถ๐ป๐ ๐๐ป๐๐ถ๐ด๐ต๐
๐น ๐๐ฒ๐ต๐ฎ๐๐ถ๐ผ๐ฟ๐ฎ๐น ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐
Go beyond โwhat happenedโ โ this branch studies how users behave & why. Useful in e-commerce, apps & web.
๐๐ณ ๐ฌ๐ผ๐ ๐ก๐ฒ๐ฒ๐ฑ ๐บ๐ผ๐ฟ๐ฒ ๐๐๐ฐ๐ต ๐ถ๐ป๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐๐ฒ ๐ฐ๐ผ๐ป๐๐ฒ๐ป๐ ๐ฑ๐ฎ๐ถ๐น๐ ๐๐ต๐ฒ๐ป ๐ฟ๐ฒ๐๐ฝ๐ผ๐ป๐ฑ ๐๐ผ ๐๐ต๐ถ๐ ๐บ๐ฒ๐๐๐ฎ๐ด๐ฒ ๐
Comment Below If You Liked This Content and was Helpful ๐ฉ๐
๐๐ฎ๐๐ถ๐ฐ๐ & ๐ฃ๐ฟ๐ผ๐ฐ๐ฒ๐๐ ๐ข๐๐ฒ๐ฟ๐๐ถ๐ฒ๐
๐น ๐๐ฎ๐๐ฎ ๐๐ถ๐ณ๐ฒ๐ฐ๐๐ฐ๐น๐ฒ:
1. Define the Question / Goal โ Be crystal clear about what youโre trying to find.
2. Collect & Clean Data โ Remove duplicates, fix missing values, standardize formats.
3. Transform & Feature Engineering โ Create new helpful variables.
4. Model / Analyze โ Use statistical methods, machine learning or aggregations.
5. Visualization & Communication โ Present insights clearly to stakeholders.
6. Feedback & Iterate โ Learn, refine, and repeat.
๐น ๐๐๐ด๐บ๐ฒ๐ป๐๐ฒ๐ฑ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:
Uses machine learning & NLP to auto-generate insights, reducing human workload.
๐ ๐๐๐-๐๐ป๐ผ๐ ๐ฅ๐ฒ๐๐ผ๐๐ฟ๐ฐ๐ฒ๐ & ๐ฃ๐น๐ฎ๐๐ณ๐ผ๐ฟ๐บ๐
๐ Kaggle Learn (Python, Data Viz, ML)
Hands-on tutorials & micro-courses.
https://www.kaggle.com/learn
๐ Mode Analytics โ SQL for Data Analysis Tutorial
Great for SQL in analytics contexts.
https://mode.com/sql-tutorial/introduction-to-sql/
๐ Microsoft Learn โ Data Analytics Path
A structured free learning path by Microsoft.
https://learn.microsoft.com/en-us/training/paths/data-analytics-microsoft/
๐ CareerFoundry โ Best Free Data Analytics Courses Guide
Good overview & links to multiple free courses.
https://careerfoundry.com/en/blog/data-analytics/free-data-analytics-courses/
๐ Grow with Google โ Data Analytics Certificate
Launch your career with Googleโs data analytics curriculum.
https://grow.google/certificates/data-analytics/
๐ง๐ถ๐ฝ๐ & ๐ง๐ฟ๐ถ๐ฐ๐ธ๐ ๐ง๐ต๐ฎ๐ ๐๐ฑ๐๐ฎ๐ป๐ฐ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฆ๐ธ๐ถ๐น๐น๐
โ ๐๐๐ถ๐น๐ฑ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐: Real datasets, real problems. Use public data from Kaggle or government portals.
โ ๐ง๐ฒ๐ฎ๐ฐ๐ต ๐ง๐ผ ๐๐ถ๐ป๐ฒ ๐ข๐๐ต๐ฒ๐ฟ๐: Explaining concepts deepens your understanding.
โ ๐๐ฎ๐ฏ๐ถ๐๐๐ฎ๐น ๐๐ฎ๐ฐ๐ธ โ ๐๐ฎ๐๐ฎ ๐๐ต๐ฒ๐ฐ๐ธs ๐๐ถ๐ฟ๐๐: Always inspect min, max, null %, duplicates.
โ ๐๐ฒ๐๐ฒ๐ฟ๐ฎ๐ด๐ฒ ๐๐ผ๐บ๐บ๐๐ป๐ถ๐๐ถ๐ฒ๐: Join data meetups, Slack groups, Kaggle forums โ learn faster together.
โ ๐ฆ๐ฐ๐ฎ๐น๐ฒ ๐๐ถ๐๐ต ๐๐๐๐ผ๐บ๐ฎ๐๐ถ๐ผ๐ป: Use scripts or pipelines (Python, SQL) rather than manual Excel steps.
โ ๐ค๐จ๐๐๐ ๐ค๐จ๐๐ฅ๐ฌ ๐๐ต๐ฒ๐ฐ๐ธ: Wrap your heavy queries in LIMIT 100 during development to test logic first.
๐ข๐ป๐ฒ ๐ฃ๐ผ๐ถ๐ป๐ ๐๐ป๐๐ถ๐ด๐ต๐
๐น ๐๐ฒ๐ต๐ฎ๐๐ถ๐ผ๐ฟ๐ฎ๐น ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐
Go beyond โwhat happenedโ โ this branch studies how users behave & why. Useful in e-commerce, apps & web.
๐๐ณ ๐ฌ๐ผ๐ ๐ก๐ฒ๐ฒ๐ฑ ๐บ๐ผ๐ฟ๐ฒ ๐๐๐ฐ๐ต ๐ถ๐ป๐ณ๐ผ๐ฟ๐บ๐ฎ๐๐ถ๐๐ฒ ๐ฐ๐ผ๐ป๐๐ฒ๐ป๐ ๐ฑ๐ฎ๐ถ๐น๐ ๐๐ต๐ฒ๐ป ๐ฟ๐ฒ๐๐ฝ๐ผ๐ป๐ฑ ๐๐ผ ๐๐ต๐ถ๐ ๐บ๐ฒ๐๐๐ฎ๐ด๐ฒ ๐
Comment Below If You Liked This Content and was Helpful ๐ฉ๐
โค3๐1๐ฅ1
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐, ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ & ๐๐ ๐ฎ๐ฟ๐ฒ ๐ต๐ถ๐ด๐ต๐น๐ ๐ฑ๐ฒ๐บ๐ฎ๐ป๐ฑ๐ถ๐ป๐ด ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Learn Live From Top Data Experts
60+ Hiring Drives Every Month
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
https://pdlink.in/3J4i7E6
( Hurry Up ๐โโ๏ธLimited Slots )
Learn Live From Top Data Experts
60+ Hiring Drives Every Month
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
https://pdlink.in/3J4i7E6
( Hurry Up ๐โโ๏ธLimited Slots )
Acciojob
Launch Your Tech Career in Data Science & AI from Scratch
Land your Dream Data Science Job in 7 Months with 500+ Hiring Partners & 100% Job Assistance. Get Mentored by IITians & Data Experts from Top Tech Companies.
๐ ๐ฃ๐ผ๐๐ฒ๐ฟ ๐ผ๐ณ ๐๐ฑ๐ด๐ฒ ๐๐ผ๐ฟ๐ฟ๐ฒ๐น๐ฎ๐๐ถ๐ผ๐ป๐: ๐๐ผ๐ ๐๐ผ ๐ณ๐ถ๐ป๐ฑ ๐ฃ๐ผ๐๐๐ถ๐๐ฒ & ๐ก๐ฒ๐ด๐ฎ๐๐ถ๐๐ฒ ๐ฅ๐ฒ๐น๐ฎ๐๐ถ๐ผ๐ป๐๐ต๐ถ๐ฝ๐ ๐ถ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ
๐น ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐๐ฑ๐ด๐ฒ ๐๐ผ๐ฟ๐ฟ๐ฒ๐น๐ฎ๐๐ถ๐ผ๐ป?
It refers to correlation values near +1 or โ1 โ indicating strong positive or negative relationships between two variables. It helps identify which factors move together.
๐น ๐ช๐ต๐ ๐ถ๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ ๐ถ๐ป ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐
โ Find features that really influence your target variable
โ Serve as candidates for predictive modeling
โ Help in variable reduction & understanding multicollinearity
๐น ๐๐ผ๐ ๐๐ผ ๐๐ฎ๐น๐ฐ๐๐น๐ฎ๐๐ฒ (๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป / ๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐)
df[['var1','var2']].corr()
This gives you a correlation matrix.
Or for a single pair:
df['var1'].corr(df['var2'])
๐น ๐๐ผ๐ ๐๐ผ ๐๐ป๐๐ฒ๐ฟ๐ฝ๐ฟ๐ฒ๐
+1.0 โ perfect positive correlation
โ1.0 โ perfect negative correlation
0 or near zero โ little or no linear relation
Very high correlations may imply multicollinearity, which can hurt regression models
๐น ๐ช๐ต๐ฒ๐ป ๐๐ผ ๐จ๐๐ฒ ๐ฃ๐ผ๐๐ถ๐๐ถ๐๐ฒ / ๐ก๐ฒ๐ด๐ฎ๐๐ถ๐๐ฒ ๐๐ผ๐ฟ๐ฟ๐ฒ๐น๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐น๐๐ฒ๐ฟ๐ถ๐ป๐ด
โ Filter pairs with abs(corr) > 0.7 for strong correlations
โ Use heatmaps to visualize many correlations at once
โ Drop redundant features with extremely high mutual correlation
๐น ๐๐ฎ๐๐๐ถ๐ผ๐ป:
Correlation โ Causation. Even if two variables move together strongly, one does not necessarily cause the other.
Based On this Content Share your reviews in comments section and answer the poll ๐๐
๐น ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐๐ฑ๐ด๐ฒ ๐๐ผ๐ฟ๐ฟ๐ฒ๐น๐ฎ๐๐ถ๐ผ๐ป?
It refers to correlation values near +1 or โ1 โ indicating strong positive or negative relationships between two variables. It helps identify which factors move together.
๐น ๐ช๐ต๐ ๐ถ๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ ๐ถ๐ป ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐
โ Find features that really influence your target variable
โ Serve as candidates for predictive modeling
โ Help in variable reduction & understanding multicollinearity
๐น ๐๐ผ๐ ๐๐ผ ๐๐ฎ๐น๐ฐ๐๐น๐ฎ๐๐ฒ (๐ถ๐ป ๐ฃ๐๐๐ต๐ผ๐ป / ๐ฃ๐ฎ๐ป๐ฑ๐ฎ๐)
df[['var1','var2']].corr()
This gives you a correlation matrix.
Or for a single pair:
df['var1'].corr(df['var2'])
๐น ๐๐ผ๐ ๐๐ผ ๐๐ป๐๐ฒ๐ฟ๐ฝ๐ฟ๐ฒ๐
+1.0 โ perfect positive correlation
โ1.0 โ perfect negative correlation
0 or near zero โ little or no linear relation
Very high correlations may imply multicollinearity, which can hurt regression models
๐น ๐ช๐ต๐ฒ๐ป ๐๐ผ ๐จ๐๐ฒ ๐ฃ๐ผ๐๐ถ๐๐ถ๐๐ฒ / ๐ก๐ฒ๐ด๐ฎ๐๐ถ๐๐ฒ ๐๐ผ๐ฟ๐ฟ๐ฒ๐น๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐น๐๐ฒ๐ฟ๐ถ๐ป๐ด
โ Filter pairs with abs(corr) > 0.7 for strong correlations
โ Use heatmaps to visualize many correlations at once
โ Drop redundant features with extremely high mutual correlation
๐น ๐๐ฎ๐๐๐ถ๐ผ๐ป:
Correlation โ Causation. Even if two variables move together strongly, one does not necessarily cause the other.
Based On this Content Share your reviews in comments section and answer the poll ๐๐
โค5๐1๐1๐1
๐ฌ ๐ค๐๐ฒ๐๐๐ถ๐ผ๐ป ๐ณ๐ผ๐ฟ ๐๐ผ๐๐ฟ?
๐ Which variable pair in your dataset surprised you by showing a strong correlation? Share in comments!๐ฉ๐
๐ Which variable pair in your dataset surprised you by showing a strong correlation? Share in comments!๐ฉ๐
Anonymous Poll
27%
1. ๐ Age โ๏ธ Income
23%
2. ๐ Marketing Spend โ๏ธ Sales
36%
3. ๐ก House Size โ๏ธ Price
25%
4. ๐ฉโ๐ป Hours Studied โ๏ธ Exam Score
29%
5. ๐ Engine Size โ๏ธ Fuel Consumption
29%
6. ๐ Experience (Years) โ๏ธ Salary
20%
7. ๐ฑ Screen Time โ๏ธ Sleep Duration
23%
8. ๐ฌ Customer Reviews โ๏ธ Product Rating
25%
9. ๐ก๏ธ Temperature โ๏ธ Ice Cream Sales
โค4๐ฅ1
๐ ๐๐ฒ๐ฐ๐ผ๐ฑ๐ถ๐ป๐ด ๐ข๐๐๐น๐ถ๐ฒ๐ฟ๐ โ ๐ช๐ต๐ ๐ง๐ต๐ฒ๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ถ๐ป ๐๐ฎ๐๐ฎ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐
๐น ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ฎ๐ป ๐ข๐๐๐น๐ถ๐ฒ๐ฟ?
It is a data point that differs significantly from the rest โ unusually high or low. Could be valid, error, or an extreme case.
๐น ๐ช๐ต๐ ๐๐ฎ๐ฟ๐ฒ ๐๐ฏ๐ผ๐๐ ๐ข๐๐๐น๐ถ๐ฒ๐ฟ๐?
โ They can skew averages & models
โ Distort regression lines and parameter estimates
โ Hide true patterns when left unchecked
โ Sometimes they reveal valuable anomalies (fraud, system errors)
๐น ๐๐ผ๐ ๐ง๐ผ ๐๐ฒ๐๐ฒ๐ฐ๐ ๐ง๐ต๐ฒ๐บ
Use boxplots & IQR method (points outside 1.5รIQR)
Z-score / standard score (values with |z| > 3)
Scatter plots and visual inspection
Use Mahalanobis distance for multivariate outliers
๐น ๐ช๐ต๐ฎ๐ ๐ง๐ผ ๐๐ผ ๐ช๐ถ๐๐ต ๐๐ฎ๐ป๐ฑ๐ถ๐ฑ๐ฎ๐๐ฒ๐
โ Verify them โ is it data entry error or true?
โ Transform or cap (winsorize) extreme values
โ Drop only if justified
โ Use robust models (e.g. median regression) that handle outliers
๐ฌ ๐๐ผ๐ฟ ๐ฌ๐ผ๐:
๐ Did you find any surprising outliers in your data? What method did you use to handle them? Share below โฌ๏ธ
๐น ๐ช๐ต๐ฎ๐ ๐ถ๐ ๐ฎ๐ป ๐ข๐๐๐น๐ถ๐ฒ๐ฟ?
It is a data point that differs significantly from the rest โ unusually high or low. Could be valid, error, or an extreme case.
๐น ๐ช๐ต๐ ๐๐ฎ๐ฟ๐ฒ ๐๐ฏ๐ผ๐๐ ๐ข๐๐๐น๐ถ๐ฒ๐ฟ๐?
โ They can skew averages & models
โ Distort regression lines and parameter estimates
โ Hide true patterns when left unchecked
โ Sometimes they reveal valuable anomalies (fraud, system errors)
๐น ๐๐ผ๐ ๐ง๐ผ ๐๐ฒ๐๐ฒ๐ฐ๐ ๐ง๐ต๐ฒ๐บ
Use boxplots & IQR method (points outside 1.5รIQR)
Z-score / standard score (values with |z| > 3)
Scatter plots and visual inspection
Use Mahalanobis distance for multivariate outliers
๐น ๐ช๐ต๐ฎ๐ ๐ง๐ผ ๐๐ผ ๐ช๐ถ๐๐ต ๐๐ฎ๐ป๐ฑ๐ถ๐ฑ๐ฎ๐๐ฒ๐
โ Verify them โ is it data entry error or true?
โ Transform or cap (winsorize) extreme values
โ Drop only if justified
โ Use robust models (e.g. median regression) that handle outliers
๐ฌ ๐๐ผ๐ฟ ๐ฌ๐ผ๐:
๐ Did you find any surprising outliers in your data? What method did you use to handle them? Share below โฌ๏ธ
โค3๐1
๐๐๐น๐น๐๐๐ฎ๐ฐ๐ธ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐ ๐๐ฅ๐๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐๐๐ฑ๐ฒ๐ฟ๐ฎ๐ฏ๐ฎ๐ฑ/๐ฃ๐๐ป๐ฒ/๐ก๐ผ๐ถ๐ฑ๐ฎ๐
Learn from the Top 1% of the tech industry
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 500+ Hiring Partners
- 60+ Hiring Drives
- 100% Placement Assistance
Eligibility:- BE/BTech / BCA / BSc / MCA / MSc
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
๐น Online :- https://pdlink.in/3Jia4Ux
๐น Hyderabad :- https://pdlink.in/3WEWr53
๐น Pune:- https://pdlink.in/43no9Hb
๐น Noida :- https://pdlink.in/4oqNp7O
Hurry Up ๐โโ๏ธ! Limited seats are available.
Learn from the Top 1% of the tech industry
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 500+ Hiring Partners
- 60+ Hiring Drives
- 100% Placement Assistance
Eligibility:- BE/BTech / BCA / BSc / MCA / MSc
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
๐น Online :- https://pdlink.in/3Jia4Ux
๐น Hyderabad :- https://pdlink.in/3WEWr53
๐น Pune:- https://pdlink.in/43no9Hb
๐น Noida :- https://pdlink.in/4oqNp7O
Hurry Up ๐โโ๏ธ! Limited seats are available.
Acciojob
Full Stack Development Courses - Java & MERN Training
Master Full Stack Development with Java & MERN. Get hands-on training, real-world projects & placement support. Start today!
โค3
๐ฅ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ + ๐ฆ๐บ๐ฎ๐ฟ๐ ๐ฅ๐ฒ๐๐๐บ๐ฒ = ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ฆ๐๐ฐ๐ฐ๐ฒ๐๐ ๐
๐ Upskill with free certifications
๐ง Create a professional, ATS-friendly resume
โก Be ready to land your dream job faster!
๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/48W1Coy
๐๐ง๐ฆ ๐๐ฟ๐ถ๐ฒ๐ป๐ฑ๐น๐ ๐ฅ๐ฒ๐๐๐บ๐ฒ :- https://pdlink.in/46PZD3V
๐ฅ Double Your Interview Chances!
๐ Upskill with free certifications
๐ง Create a professional, ATS-friendly resume
โก Be ready to land your dream job faster!
๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/48W1Coy
๐๐ง๐ฆ ๐๐ฟ๐ถ๐ฒ๐ป๐ฑ๐น๐ ๐ฅ๐ฒ๐๐๐บ๐ฒ :- https://pdlink.in/46PZD3V
๐ฅ Double Your Interview Chances!
Great Learning
Free Online Courses & Certificates to Learn & Build Skills
Great Learning Academy offers free online courses with certificates in various domains such as Gen AI, Prompt Engineering, Data Science, AI, ML, IT & Software, Cloud Computing, Marketing, Big Data & more.
โค3
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ (๐๐๐ฑ/๐ฃ๐๐ป๐ฒ/๐ก๐ผ๐ถ๐ฑ๐ฎ )๐
Learn from the Top 1% of the data analytics industry
Learn Data Analytics with Hands-on Training, Industry Projects, and 100% Placement Assistance.
Unlock Opportunities With 500+ Hiring Partners
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
๐น Online :- https://pdlink.in/3J4i7E6
๐น Hyderabad :- https://pdlink.in/3VAmsCe
๐น Pune:- https://pdlink.in/4hsc6yg
๐น Noida :- https://pdlink.in/3VAkxO2
Hurry Up ๐โโ๏ธ! Limited seats are available.
Learn from the Top 1% of the data analytics industry
Learn Data Analytics with Hands-on Training, Industry Projects, and 100% Placement Assistance.
Unlock Opportunities With 500+ Hiring Partners
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
๐น Online :- https://pdlink.in/3J4i7E6
๐น Hyderabad :- https://pdlink.in/3VAmsCe
๐น Pune:- https://pdlink.in/4hsc6yg
๐น Noida :- https://pdlink.in/3VAkxO2
Hurry Up ๐โโ๏ธ! Limited seats are available.
Acciojob
Launch Your Tech Career in Data Science & AI from Scratch
Land your Dream Data Science Job in 7 Months with 500+ Hiring Partners & 100% Job Assistance. Get Mentored by IITians & Data Experts from Top Tech Companies.
โค1
๐๐จ๐จ๐ ๐ฅ๐ ๐๐ฌ ๐๐ข๐ซ๐ข๐ง๐ ๐
Grab this chance to join Googleโs analytics team! ๐
Role:- Data Analyst (or similar Data Analytics position)
Qualification:- Bachelorโs degree or equivalent practical experience; strong skills in SQL, data visualization, and analytics
Job Location:- Multiple locations globally (including Bengaluru, India)
Salary Package:- โน12 โ 25 LPA (Based on role, experience & location)
๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐จ๐ฐ๐
CHECK FOR LINK BELOW๐
Apply before the link expires โจ
๐ฏ Interview Questions & Answers for the Google Data Analyst Role
Technical / SQL & Data Manipulation
1๏ธโฃ Question:
Write a query to count the number of customers who were upsold (i.e., made more than one purchase).
Answer:
SELECT customer_id, COUNT(order_id) AS total_orders
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > 1;
โ This query groups customers and filters those with more than one order โ identifying customers who were upsold.
2๏ธโฃ Question:
Write a SQL query to compute cumulative sales for each product by date.
Answer:
SELECT
product_id,
order_date,
SUM(sales) OVER (PARTITION BY product_id ORDER BY order_date) AS cumulative_sales
FROM sales_data;
โ Uses a window function to calculate running totals of sales by product.
3๏ธโฃ Question:
How would you optimise a very slow SQL query joining multiple large tables?
Answer:
โ Approach:
โข Use EXPLAIN to analyze query execution plan.
โข Ensure indexes on join keys and filters.
โข Replace SELECT * with only required columns.
โข Consider materialized views or CTEs for reuse.
โข Check data partitioning in big tables.
4๏ธโฃ Question:
Given two tables (clicks and conversions), write a query to compute click-through-rate (CTR) and conversion rate for each ad.
Answer:
SELECT
c.ad_id,
COUNT(DISTINCT c.user_id) AS total_clicks,
COUNT(DISTINCT cv.user_id) AS total_conversions,
COUNT(DISTINCT cv.user_id) * 1.0 / COUNT(DISTINCT c.user_id) AS conversion_rate
FROM clicks c
LEFT JOIN conversions cv
ON c.ad_id = cv.ad_id AND c.user_id = cv.user_id
GROUP BY c.ad_id;
โ Calculates CTR and conversion rate per ad by joining user-level click and conversion data.
Product / Business Case / Analytics Thinking
5๏ธโฃ Question:
How would you measure the success of a new feature (for example, audio chat) introduced on an online marketplace?
Answer:
โ Define Key Metrics:
โข Engagement: # of audio chats started, avg duration.
โข Retention: % of users using audio chat repeatedly.
โข Conversion: % of users who completed a transaction after using audio chat.
โ Run an A/B test: Compare metrics between feature and control groups.
6๏ธโฃ Question:
Explain a scatterplot showing โCompletion Rate vs Video Lengthโ for a video platform. What insights might you draw?
Answer:
โ Analysis:
โข Negative correlation indicates longer videos โ lower completion rates.
โข Identify โoptimal lengthโ range with highest engagement.
โข Look for outliers (short videos with poor completion โ low interest).
โ Business Insight: Helps guide ideal video length for creators.
Behavioural / Fit Questions
7๏ธโฃ Question:
Describe a data-analysis project you worked on: what were the challenges and how did you overcome them?
Answer:
โ Example: โI analyzed user churn data using SQL and Python. The challenge was missing demographic fields. I collaborated with the data engineering team to impute missing values using averages from similar cohorts, improving model accuracy by 12%.โ
8๏ธโฃ Question:
How do you prioritise tasks when working on multiple analytics projects simultaneously?
Answer:
โ Answer: โI assess business impact and urgency, align with stakeholders on deadlines, and use Agile methods โ maintaining a backlog and weekly sprint goals. I also ensure regular communication to avoid blockers.โ
9๏ธโฃ Question:
Tell us about a time when you received incomplete or conflicting data. What did you do?
Answer:
โ Answer: โWhile analyzing marketing data, campaign IDs were missing for 15% of rows. I investigated source logs, validated against CRM data, and applied conditional joins to recover 90% of missing entries before analysis.โ
Grab this chance to join Googleโs analytics team! ๐
Role:- Data Analyst (or similar Data Analytics position)
Qualification:- Bachelorโs degree or equivalent practical experience; strong skills in SQL, data visualization, and analytics
Job Location:- Multiple locations globally (including Bengaluru, India)
Salary Package:- โน12 โ 25 LPA (Based on role, experience & location)
๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐จ๐ฐ๐
CHECK FOR LINK BELOW๐
Apply before the link expires โจ
๐ฏ Interview Questions & Answers for the Google Data Analyst Role
Technical / SQL & Data Manipulation
1๏ธโฃ Question:
Write a query to count the number of customers who were upsold (i.e., made more than one purchase).
Answer:
SELECT customer_id, COUNT(order_id) AS total_orders
FROM orders
GROUP BY customer_id
HAVING COUNT(order_id) > 1;
โ This query groups customers and filters those with more than one order โ identifying customers who were upsold.
2๏ธโฃ Question:
Write a SQL query to compute cumulative sales for each product by date.
Answer:
SELECT
product_id,
order_date,
SUM(sales) OVER (PARTITION BY product_id ORDER BY order_date) AS cumulative_sales
FROM sales_data;
โ Uses a window function to calculate running totals of sales by product.
3๏ธโฃ Question:
How would you optimise a very slow SQL query joining multiple large tables?
Answer:
โ Approach:
โข Use EXPLAIN to analyze query execution plan.
โข Ensure indexes on join keys and filters.
โข Replace SELECT * with only required columns.
โข Consider materialized views or CTEs for reuse.
โข Check data partitioning in big tables.
4๏ธโฃ Question:
Given two tables (clicks and conversions), write a query to compute click-through-rate (CTR) and conversion rate for each ad.
Answer:
SELECT
c.ad_id,
COUNT(DISTINCT c.user_id) AS total_clicks,
COUNT(DISTINCT cv.user_id) AS total_conversions,
COUNT(DISTINCT cv.user_id) * 1.0 / COUNT(DISTINCT c.user_id) AS conversion_rate
FROM clicks c
LEFT JOIN conversions cv
ON c.ad_id = cv.ad_id AND c.user_id = cv.user_id
GROUP BY c.ad_id;
โ Calculates CTR and conversion rate per ad by joining user-level click and conversion data.
Product / Business Case / Analytics Thinking
5๏ธโฃ Question:
How would you measure the success of a new feature (for example, audio chat) introduced on an online marketplace?
Answer:
โ Define Key Metrics:
โข Engagement: # of audio chats started, avg duration.
โข Retention: % of users using audio chat repeatedly.
โข Conversion: % of users who completed a transaction after using audio chat.
โ Run an A/B test: Compare metrics between feature and control groups.
6๏ธโฃ Question:
Explain a scatterplot showing โCompletion Rate vs Video Lengthโ for a video platform. What insights might you draw?
Answer:
โ Analysis:
โข Negative correlation indicates longer videos โ lower completion rates.
โข Identify โoptimal lengthโ range with highest engagement.
โข Look for outliers (short videos with poor completion โ low interest).
โ Business Insight: Helps guide ideal video length for creators.
Behavioural / Fit Questions
7๏ธโฃ Question:
Describe a data-analysis project you worked on: what were the challenges and how did you overcome them?
Answer:
โ Example: โI analyzed user churn data using SQL and Python. The challenge was missing demographic fields. I collaborated with the data engineering team to impute missing values using averages from similar cohorts, improving model accuracy by 12%.โ
8๏ธโฃ Question:
How do you prioritise tasks when working on multiple analytics projects simultaneously?
Answer:
โ Answer: โI assess business impact and urgency, align with stakeholders on deadlines, and use Agile methods โ maintaining a backlog and weekly sprint goals. I also ensure regular communication to avoid blockers.โ
9๏ธโฃ Question:
Tell us about a time when you received incomplete or conflicting data. What did you do?
Answer:
โ Answer: โWhile analyzing marketing data, campaign IDs were missing for 15% of rows. I investigated source logs, validated against CRM data, and applied conditional joins to recover 90% of missing entries before analysis.โ
๐1
๐ Question:
What are your favorite data visualization tools, and how do you decide which one to use?
Answer:
โ Answer: โI use Google Data Studio and Power BI for dashboards, and Python (Matplotlib/Seaborn) for exploratory analysis. Choice depends on audience โ dashboards for business stakeholders, Jupyter visuals for internal analytics.
๐๐ฅ๐ข๐๐ค ๐จ๐ง ๐ญ๐ก๐ ๐๐ข๐ง๐ค ๐๐๐ฅ๐จ๐ฐ ๐๐จ ๐๐ฉ๐ฉ๐ฅ๐ฒ๐
https://t.me/careeralertswithHeena/74
What are your favorite data visualization tools, and how do you decide which one to use?
Answer:
โ Answer: โI use Google Data Studio and Power BI for dashboards, and Python (Matplotlib/Seaborn) for exploratory analysis. Choice depends on audience โ dashboards for business stakeholders, Jupyter visuals for internal analytics.
๐๐ฅ๐ข๐๐ค ๐จ๐ง ๐ญ๐ก๐ ๐๐ข๐ง๐ค ๐๐๐ฅ๐จ๐ฐ ๐๐จ ๐๐ฉ๐ฉ๐ฅ๐ฒ๐
https://t.me/careeralertswithHeena/74
โค1
๐๐ฒ๐ฐ๐ผ๐บ๐ฒ ๐ฎ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐๐น๐น๐๐๐ฎ๐ฐ๐ธ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐ฒ๐ฟ ๐ช๐ถ๐๐ต ๐ฃ๐ฎ๐ ๐๐ณ๐๐ฒ๐ฟ ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ ๐
Learn coding from Top Tech Professionals
Unlock Opportunities With 500+ Hiring Partners
Get an Avg 7.4LPA With 100% Job Assistance
Eligibility :- All Degrees & Backgrounds Eligible
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
https://pdlink.in/3Jia4Ux
( Hurry Up ๐โโ๏ธLimited Slots )
Learn coding from Top Tech Professionals
Unlock Opportunities With 500+ Hiring Partners
Get an Avg 7.4LPA With 100% Job Assistance
Eligibility :- All Degrees & Backgrounds Eligible
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐ก๐ผ๐๐:-
https://pdlink.in/3Jia4Ux
( Hurry Up ๐โโ๏ธLimited Slots )
Acciojob
Full Stack Development Courses - Java & MERN Training
Master Full Stack Development with Java & MERN. Get hands-on training, real-world projects & placement support. Start today!
๐๐ฉ๐ญ๐ข๐ฆ๐ฌ๐ฉ๐๐๐.๐ข๐ง ๐ข๐ฌ ๐ก๐ข๐ซ๐ข๐ง๐ ๐
Role: Data Science Intern (Freshers / Students)
Qualifications: UG/PG in Data Science, Computer Science, Statistics, Mathematics โ Python, R, SQL, Excel, Machine Learning, Data Visualization skills preferred
Location: Remote (India)
Stipend / Package: โน7,500 โ โน15,000 (Performance-based, Paid Internship)
๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐จ๐ฐ(check below)
๐๐ผ๐ ๐๐ผ ๐๐ฝ๐ฝ๐น๐ โ ๐ฆ๐๐ฒ๐ฝ-๐ฏ๐-๐ฆ๐๐ฒ๐ฝ ๐๐๐ถ๐ฑ๐ฒ
๐ข๐ฝ๐ฒ๐ป ๐๐ต๐ฒ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ
Click or tap on: https://in.indeed.com/q-data-science-internship-jobs.html
๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐ณ๐ผ๐ฟ โOptimspace .in Data Science Internโ
If the internship doesn't appear immediately, use the search bar with keywords โOptimspace .in Data Science Internโ and select โRemoteโ under location.
๐ฅ๐ฒ๐๐ถ๐ฒ๐ ๐๐ต๐ฒ ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ ๐๐ฒ๐๐ฎ๐ถ๐น๐
Check the job description, skills required, stipend, and eligibility to ensure you match their requirements.
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ
Update your resume, focusing on relevant skills like Python, SQL, Excel, and any analytics projects or coursework youโve completed.
๐๐น๐ถ๐ฐ๐ธ โApply Nowโ
Find the โApply Nowโ button on the internship listing page and click it.
๐๐ถ๐น๐น ๐ข๐๐ ๐๐ต๐ฒ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐ฟ๐บ
Enter your personal information, upload your resume (PDF preferred), and add a cover letter if requested.
๐ฆ๐๐ฏ๐บ๐ถ๐ ๐๐ต๐ฒ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป
Double check your entries, then submit the application.
๐ง๐ฟ๐ฎ๐ฐ๐ธ ๐ฌ๐ผ๐๐ฟ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป
Log in to Indeed to check the status of your application and watch for updates or messages from the employer.
Check out this link to apply for this internship ๐
https://t.me/careeralertswithHeena/75
Role: Data Science Intern (Freshers / Students)
Qualifications: UG/PG in Data Science, Computer Science, Statistics, Mathematics โ Python, R, SQL, Excel, Machine Learning, Data Visualization skills preferred
Location: Remote (India)
Stipend / Package: โน7,500 โ โน15,000 (Performance-based, Paid Internship)
๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐จ๐ฐ(check below)
๐๐ผ๐ ๐๐ผ ๐๐ฝ๐ฝ๐น๐ โ ๐ฆ๐๐ฒ๐ฝ-๐ฏ๐-๐ฆ๐๐ฒ๐ฝ ๐๐๐ถ๐ฑ๐ฒ
๐ข๐ฝ๐ฒ๐ป ๐๐ต๐ฒ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ
Click or tap on: https://in.indeed.com/q-data-science-internship-jobs.html
๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐ณ๐ผ๐ฟ โOptimspace .in Data Science Internโ
If the internship doesn't appear immediately, use the search bar with keywords โOptimspace .in Data Science Internโ and select โRemoteโ under location.
๐ฅ๐ฒ๐๐ถ๐ฒ๐ ๐๐ต๐ฒ ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ ๐๐ฒ๐๐ฎ๐ถ๐น๐
Check the job description, skills required, stipend, and eligibility to ensure you match their requirements.
๐ฃ๐ฟ๐ฒ๐ฝ๐ฎ๐ฟ๐ฒ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ
Update your resume, focusing on relevant skills like Python, SQL, Excel, and any analytics projects or coursework youโve completed.
๐๐น๐ถ๐ฐ๐ธ โApply Nowโ
Find the โApply Nowโ button on the internship listing page and click it.
๐๐ถ๐น๐น ๐ข๐๐ ๐๐ต๐ฒ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐ฟ๐บ
Enter your personal information, upload your resume (PDF preferred), and add a cover letter if requested.
๐ฆ๐๐ฏ๐บ๐ถ๐ ๐๐ต๐ฒ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป
Double check your entries, then submit the application.
๐ง๐ฟ๐ฎ๐ฐ๐ธ ๐ฌ๐ผ๐๐ฟ ๐๐ฝ๐ฝ๐น๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป
Log in to Indeed to check the status of your application and watch for updates or messages from the employer.
Check out this link to apply for this internship ๐
https://t.me/careeralertswithHeena/75
โค1
๐ฆ โช ๐๐ฅ๐ข๐ ๐ก๐ข๐ฉ๐๐ ๐๐๐ฅ ๐ฐ โ ๐๐๐๐ง๐๐ฃ๐ง ๐๐ข ๐๐ข๐ฅ ๐๐ฅ๐๐ ๐๐ก ๐๐ก๐๐๐! ๐ฎ๐ณ
Yes, you read that right! OpenAI is giving India exclusive early access to premium ChatGPT Go features โ absolutely FREE, starting November 4th! ๐
No Plus plan, no payment, no hidden cost. Just log in and enjoy upgraded ChatGPT power ๐ฅ
โช ๐ช๐ต๐ฎ๐โ๐ ๐๐ป๐ฐ๐น๐๐ฑ๐ฒ๐ฑ:
โก Higher daily message limits
๐จ More image generations & file uploads
๐ง Longer memory for smarter, context-aware replies
๐ฌ GPT-4-level capabilities (rolling out gradually across users)
โช ๐๐ฒ๐ฟ๐ฒโ๐ ๐๐ผ๐ ๐ง๐ผ ๐๐ฒ๐ ๐๐ต๐ฎ๐๐๐ฃ๐ง ๐๐ฟ๐ฒ๐ฒ (๐ฆ๐ง๐๐ฃ ๐๐ฌ ๐ฆ๐ง๐๐ฃ):
1๏ธโฃ Update or Install ChatGPT App โ Go to Play Store / App Store and make sure youโre on the latest version. (You can also visit chat.openai.com๏ฟผ).
2๏ธโฃ Sign In or Create Account โ Use your email or Google/Apple login. Make sure your region is set to India.
3๏ธโฃ Watch for โChatGPT Go Free for a Yearโ Banner โ Once you log in after Nov 4, youโll see a pop-up or banner offering free ChatGPT Go access.
4๏ธโฃ Click โActivateโ or โClaim Offerโ โ Follow the on-screen steps; no payment info is needed.
5๏ธโฃ Enjoy Premium Features โ Youโll automatically get access to GPT-4-level tools, image generation, and longer chats for 1 full year!
6๏ธโฃ Check Settings โ My Plan โ Confirm that your plan shows ChatGPT Go (Free for 1 Year).
โช ๐ช๐ต๐ฎ๐ ๐ง๐ผ ๐๐ผ ๐๐ณ ๐ฌ๐ผ๐ ๐๐ผ๐ปโ๐ ๐ฆ๐ฒ๐ฒ ๐ง๐ต๐ฒ ๐ข๐ณ๐ณ๐ฒ๐ฟ:
๐น Log out & back in after Nov 4
๐น Update your app manually
๐น Try the web version
๐น Rollout is gradual โ check again after a few hours
โช ๐ช๐ต๐ ๐๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐:
India becomes one of the first countries in the world to get this free premium rollout ๐
Perfect for students, data professionals, creators, and tech learners who use AI daily.
โจ ๐ค๐๐ถ๐ฐ๐ธ ๐ง๐ถ๐ฝ:
Comment โGOโ ๐๐ผ and Iโll share the early access link + activation guide directly in your DMs or broadcast channel ๐
๐ ๐ง๐ฎ๐ด๐ ๐ณ๐ผ๐ฟ ๐ฌ๐ผ๐๐ฟ ๐ฃ๐ผ๐๐:
โข ChatGPT Free India 2025
โข OpenAI Free Access November 4
โข ChatGPT Go Activation
โข AI Tools for Students & Professionals
โข Data & AI for Everyone
Yes, you read that right! OpenAI is giving India exclusive early access to premium ChatGPT Go features โ absolutely FREE, starting November 4th! ๐
No Plus plan, no payment, no hidden cost. Just log in and enjoy upgraded ChatGPT power ๐ฅ
โช ๐ช๐ต๐ฎ๐โ๐ ๐๐ป๐ฐ๐น๐๐ฑ๐ฒ๐ฑ:
โก Higher daily message limits
๐จ More image generations & file uploads
๐ง Longer memory for smarter, context-aware replies
๐ฌ GPT-4-level capabilities (rolling out gradually across users)
โช ๐๐ฒ๐ฟ๐ฒโ๐ ๐๐ผ๐ ๐ง๐ผ ๐๐ฒ๐ ๐๐ต๐ฎ๐๐๐ฃ๐ง ๐๐ฟ๐ฒ๐ฒ (๐ฆ๐ง๐๐ฃ ๐๐ฌ ๐ฆ๐ง๐๐ฃ):
1๏ธโฃ Update or Install ChatGPT App โ Go to Play Store / App Store and make sure youโre on the latest version. (You can also visit chat.openai.com๏ฟผ).
2๏ธโฃ Sign In or Create Account โ Use your email or Google/Apple login. Make sure your region is set to India.
3๏ธโฃ Watch for โChatGPT Go Free for a Yearโ Banner โ Once you log in after Nov 4, youโll see a pop-up or banner offering free ChatGPT Go access.
4๏ธโฃ Click โActivateโ or โClaim Offerโ โ Follow the on-screen steps; no payment info is needed.
5๏ธโฃ Enjoy Premium Features โ Youโll automatically get access to GPT-4-level tools, image generation, and longer chats for 1 full year!
6๏ธโฃ Check Settings โ My Plan โ Confirm that your plan shows ChatGPT Go (Free for 1 Year).
โช ๐ช๐ต๐ฎ๐ ๐ง๐ผ ๐๐ผ ๐๐ณ ๐ฌ๐ผ๐ ๐๐ผ๐ปโ๐ ๐ฆ๐ฒ๐ฒ ๐ง๐ต๐ฒ ๐ข๐ณ๐ณ๐ฒ๐ฟ:
๐น Log out & back in after Nov 4
๐น Update your app manually
๐น Try the web version
๐น Rollout is gradual โ check again after a few hours
โช ๐ช๐ต๐ ๐๐ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐:
India becomes one of the first countries in the world to get this free premium rollout ๐
Perfect for students, data professionals, creators, and tech learners who use AI daily.
โจ ๐ค๐๐ถ๐ฐ๐ธ ๐ง๐ถ๐ฝ:
Comment โGOโ ๐๐ผ and Iโll share the early access link + activation guide directly in your DMs or broadcast channel ๐
๐ ๐ง๐ฎ๐ด๐ ๐ณ๐ผ๐ฟ ๐ฌ๐ผ๐๐ฟ ๐ฃ๐ผ๐๐:
โข ChatGPT Free India 2025
โข OpenAI Free Access November 4
โข ChatGPT Go Activation
โข AI Tools for Students & Professionals
โข Data & AI for Everyone
โค5
๐จ๐๐๐ฌ๐ญ ๐๐ก๐๐ง๐๐ ๐ญ๐จ ๐๐๐ญ ๐๐จ๐ฏ๐๐ซ๐ง๐ฆ๐๐ง๐ญ ๐๐๐ข๐ ๐๐ง๐ญ๐๐ซ๐ง๐ฌ๐ก๐ข๐ฉ๐
Hereโs your golden opportunity to earn โน40,000 per month while gaining real-world experience through an official Government Internship Program ๐ผ
โณ Deadline Extended till 1st November 2025 โ Donโt miss this final chance to apply!
๐ Internship Duration: 6 Months
๐ฐ Stipend: โน40,000 per month
๐ป Domains Available:
โข Data Science
โข Software Development
โข Cybersecurity
โข Product Management
โข UI/UX Design
โจ Youโll Also Get:
โ Mentorship from Industry Experts
โ Hands-on Project Experience
โ Certificate of Completion from an Official Government Platform
๐ This internship is 100% legit, designed to help students and freshers build experience + income while studying!
โ ๏ธ Registration Closes Soon!
or access it directly here ๐ https://www.bharatdigital.io/fellowship
Hereโs your golden opportunity to earn โน40,000 per month while gaining real-world experience through an official Government Internship Program ๐ผ
โณ Deadline Extended till 1st November 2025 โ Donโt miss this final chance to apply!
๐ Internship Duration: 6 Months
๐ฐ Stipend: โน40,000 per month
๐ป Domains Available:
โข Data Science
โข Software Development
โข Cybersecurity
โข Product Management
โข UI/UX Design
โจ Youโll Also Get:
โ Mentorship from Industry Experts
โ Hands-on Project Experience
โ Certificate of Completion from an Official Government Platform
๐ This internship is 100% legit, designed to help students and freshers build experience + income while studying!
โ ๏ธ Registration Closes Soon!
or access it directly here ๐ https://www.bharatdigital.io/fellowship
โค2๐1
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐๐น๐น๐๐๐ฎ๐ฐ๐ธ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐๐
Build Full Stack Skills That Crack Product-Based Companies
- Break into the Tech industry as a Full-stack developer with the right guidance.
Eligibility :- Working Professionals & Graduates
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4nwSPwU
Date :- November 02 , 2025 Time:-7:00 PM
Build Full Stack Skills That Crack Product-Based Companies
- Break into the Tech industry as a Full-stack developer with the right guidance.
Eligibility :- Working Professionals & Graduates
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4nwSPwU
Date :- November 02 , 2025 Time:-7:00 PM
www.guvi.in
How to Build Full Stack Skills That Crack Product-Based Companies
About the Masterclass
Are you interested in a career in Full Stack Development but worried about your lack of coding experience? This webinar is designed just for you! Join us for an insightful session and discover how to break into the tech industry asโฆ
Are you interested in a career in Full Stack Development but worried about your lack of coding experience? This webinar is designed just for you! Join us for an insightful session and discover how to break into the tech industry asโฆ
๐ ๐๐ง๐ญ๐๐ซ๐ง๐ฌ๐ก๐ข๐ฉ ๐๐ฉ๐๐ง๐ข๐ง๐ ๐ฌ ๐๐ฉ๐ฉ๐ฅ๐ฒ ๐๐๐๐จ๐ซ๐ ๐ข๐ญ ๐๐ฑ๐ฉ๐ข๐ซ๐๐ฌ๐
๐ข๐ฝ๐๐ถ๐บ๐ฎ๐๐๐ ๐
Role:- Data Analytics Intern
Location:- Work From Home (India)
Qualification:- Any graduate / fresher
Salary Package:- โน10,000 โ โน20,000 / month (approx)
๐๐บ๐ฟ๐ฎ๐๐ฎ ๐
Role:- Data Analytics Intern
Location:- Work From Home
Qualification:- Fresher / Student
Salary Package:- โน15,000 / โน25,000 month (estimated)
๐๐ผ๐ฟ๐ฒ๐ ๐
Role:- Digital Transformation / Data Analytics Intern
Location:- Mumbai, India
Qualification:- Bachelorโs degree / MBA / Data Analytics background
Salary Package:- โน8,000 โ โน12,000 / month
๐ ๐ ๐จ๐ซ ๐ฆ๐จ๐ซ๐ ๐ฃ๐จ๐ ๐ฎ๐ฉ๐๐๐ญ๐๐ฌ ๐๐ง๐ ๐๐๐ญ๐๐ข๐ฅ๐ฌ, ๐ฏ๐ข๐ฌ๐ข๐ญ ๐ฆ๐ฒ ๐๐จ๐-๐๐ฉ๐๐๐ญ๐๐ฌ ๐๐ก๐๐ง๐ง๐๐ฅ:
https://t.me/careeralertswithHeena/78 ๐(Click Here to Apply)๐
Step-by-Step: How to apply๐๐งโ๐ป
1. Open the apply link โ click the direct link in the post (Internshala link opens the internship page).
2. Read full listing โ check duration, stipend, responsibilities, eligibility, start date.
3. Prepare your resume (1 page) โ highlight: SQL, Excel, Power BI, Python, projects, and any coursework. Filename: Firstname_Lastname_Resume.pdf.
4. Write a 2-3 line cover message (if thereโs a form box) โ example: โHi, Iโm Ayesha โ a fresher with hands-on SQL & Power BI. Iโm excited to intern at [Company] and contribute to analytics projects.โ
5. Sign in / Create account โ Internshala requires login. Use the email you monitor.
6. Fill apply form carefully โ attach resume, add academic details, answer screening questions honestly. Paste your short cover message if thereโs a message box.
7. Submit & note confirmation โ screenshot the confirmation or email. Save the internship URL and submission date.
8. Follow up after 7โ10 days โ if contact details are listed, send a polite follow-up message: short, 1โ2 lines reaffirming interest and availability.
9. Prepare for interview โ review SQL basics (joins, group by, window functions), Excel shortcuts & formulas, Power BI basics (data model, measures), and one small project to discuss.
10. Stay organized โ keep a Google Sheet of: Company | Role | Link | Applied on | Status | Notes.โ ๏ธ
๐ข๐ฝ๐๐ถ๐บ๐ฎ๐๐๐ ๐
Role:- Data Analytics Intern
Location:- Work From Home (India)
Qualification:- Any graduate / fresher
Salary Package:- โน10,000 โ โน20,000 / month (approx)
๐๐บ๐ฟ๐ฎ๐๐ฎ ๐
Role:- Data Analytics Intern
Location:- Work From Home
Qualification:- Fresher / Student
Salary Package:- โน15,000 / โน25,000 month (estimated)
๐๐ผ๐ฟ๐ฒ๐ ๐
Role:- Digital Transformation / Data Analytics Intern
Location:- Mumbai, India
Qualification:- Bachelorโs degree / MBA / Data Analytics background
Salary Package:- โน8,000 โ โน12,000 / month
๐ ๐ ๐จ๐ซ ๐ฆ๐จ๐ซ๐ ๐ฃ๐จ๐ ๐ฎ๐ฉ๐๐๐ญ๐๐ฌ ๐๐ง๐ ๐๐๐ญ๐๐ข๐ฅ๐ฌ, ๐ฏ๐ข๐ฌ๐ข๐ญ ๐ฆ๐ฒ ๐๐จ๐-๐๐ฉ๐๐๐ญ๐๐ฌ ๐๐ก๐๐ง๐ง๐๐ฅ:
https://t.me/careeralertswithHeena/78 ๐(Click Here to Apply)๐
Step-by-Step: How to apply๐๐งโ๐ป
1. Open the apply link โ click the direct link in the post (Internshala link opens the internship page).
2. Read full listing โ check duration, stipend, responsibilities, eligibility, start date.
3. Prepare your resume (1 page) โ highlight: SQL, Excel, Power BI, Python, projects, and any coursework. Filename: Firstname_Lastname_Resume.pdf.
4. Write a 2-3 line cover message (if thereโs a form box) โ example: โHi, Iโm Ayesha โ a fresher with hands-on SQL & Power BI. Iโm excited to intern at [Company] and contribute to analytics projects.โ
5. Sign in / Create account โ Internshala requires login. Use the email you monitor.
6. Fill apply form carefully โ attach resume, add academic details, answer screening questions honestly. Paste your short cover message if thereโs a message box.
7. Submit & note confirmation โ screenshot the confirmation or email. Save the internship URL and submission date.
8. Follow up after 7โ10 days โ if contact details are listed, send a polite follow-up message: short, 1โ2 lines reaffirming interest and availability.
9. Prepare for interview โ review SQL basics (joins, group by, window functions), Excel shortcuts & formulas, Power BI basics (data model, measures), and one small project to discuss.
10. Stay organized โ keep a Google Sheet of: Company | Role | Link | Applied on | Status | Notes.โ ๏ธ
โค4