Understanding Clean Code: Emergence โก๏ธ
Chapter 12 of Clean Code, titled "Emergence," explores how clean, well-structured software emerges from adherence to fundamental design principles.
https://dev.to/alisamir/understanding-clean-code-emergence-19bm
Chapter 12 of Clean Code, titled "Emergence," explores how clean, well-structured software emerges from adherence to fundamental design principles.
https://dev.to/alisamir/understanding-clean-code-emergence-19bm
Top 4 Forms of Authentication Mechanisms ๐ป
Cryptographic keys are used to access remote systems and servers securely
Tokens that provide limited access to user data on third-party applications
Digital certificates ensure secure and encrypted communication between servers and clients
User authentication information is used to verify and grant access to various systems and services
SSH Keys
Cryptographic keys are used to access remote systems and servers securely
OAuth Tokens
Tokens that provide limited access to user data on third-party applications
SSL Certificates
Digital certificates ensure secure and encrypted communication between servers and clients
Credentials
User authentication information is used to verify and grant access to various systems and services
โค3
ูู ุนุงูู
ุงูุณููุชููุฑ ูุชูุงุจู ุฃูู
ุงุท ุชุตู
ูู
ุฒู MVC ู MVP ู MVVM ู MVI.
ุฎูููุง ูุฏุฑุฏุด ุดููุฉ ุนู ูู ูุงุญุฏ ูููู ููุดูู ุฅูู ุงููุฑู ุจูููู ูุฅุฒุงู ูู ูุงุญุฏ ุจูุฃุซุฑ ุนูู ุทุฑููุฉ ูุชุงุจุฉ ุงูููุฏ ูุชูุธูู ู.
https://www.linkedin.com/posts/dev-alisamir_softwaredeveloper-softwaredevelopment-programming-activity-7248978308028125184-z3_e
ุฎูููุง ูุฏุฑุฏุด ุดููุฉ ุนู ูู ูุงุญุฏ ูููู ููุดูู ุฅูู ุงููุฑู ุจูููู ูุฅุฒุงู ูู ูุงุญุฏ ุจูุฃุซุฑ ุนูู ุทุฑููุฉ ูุชุงุจุฉ ุงูููุฏ ูุชูุธูู ู.
https://www.linkedin.com/posts/dev-alisamir_softwaredeveloper-softwaredevelopment-programming-activity-7248978308028125184-z3_e
โค6
ู
ู ุทุฑู ุชุญุณูู ุฅู
ูุงููุฉ ุงููุตูู ููู
ุณุชุฎุฏู
...(Accessibility)
.
.
ุชุจุงูู ุงูุฃููุงู ูู ุงูู ููุน ุฃู ุงูุชุตู ูู ุจููุนุจ ุฏูุฑ ูุจูุฑ ูู ุชุญุณูู ุงูู Accessibility ููู ุณุชุฎุฏู ููุ ุนูุดุงู ูุฏู ูุงุฒู ุชุชุฃูุฏ ุฅูู ู ูุงุณุจ ููู ุงููุงุณ ูู ุชูุงูู ู ุน ู ุนุงููุฑ ุงูู Accessibility. ๐ฏ
โโโ-
https://www.linkedin.com/posts/dev-alisamir_webdeveloper-webdevelopment-accessibility-activity-7249381038563508226-x_MY
.
.
ุชุจุงูู ุงูุฃููุงู ูู ุงูู ููุน ุฃู ุงูุชุตู ูู ุจููุนุจ ุฏูุฑ ูุจูุฑ ูู ุชุญุณูู ุงูู Accessibility ููู ุณุชุฎุฏู ููุ ุนูุดุงู ูุฏู ูุงุฒู ุชุชุฃูุฏ ุฅูู ู ูุงุณุจ ููู ุงููุงุณ ูู ุชูุงูู ู ุน ู ุนุงููุฑ ุงูู Accessibility. ๐ฏ
โโโ-
https://www.linkedin.com/posts/dev-alisamir_webdeveloper-webdevelopment-accessibility-activity-7249381038563508226-x_MY
โค2
ู
ุฌู
ูุนุฉ ู
ุดุงุฑูุน ู
ูุชูุญุฉ ุงูู
ุตุฏุฑ ู
ุจููุฉ ุจุงุณุชุฎุฏุงู
ุฅุทุงุฑ ุงูุนู
ู Laravel ุชูุฏุฑ ุชุณุงูู
ูููุง ูุชุถูููุง ุงูู CV ๐ป
https://laraveldaily.com/post/large-laravel-open-source-projects
10 Large Open-Source Projects Built with Laravel
https://laraveldaily.com/post/large-laravel-open-source-projects
ูููุงุช ููุชููุจ ูุชููุฏู ุฌุฏูุง ูู ู
ููุฏุณ ุจุฑู
ุฌูุงุช ๐ป
https://www.linkedin.com/posts/dev-alisamir_softwareengineer-softwareengineering-programming-activity-7249693933469921281-dY0z
https://www.linkedin.com/posts/dev-alisamir_softwareengineer-softwareengineering-programming-activity-7249693933469921281-dY0z
Big O Notation: The Secret to Writing Efficient Algorithms ๐ป
From simple array operations to complex sorting algorithms, understanding the Big O Notation is critical for building high-performance software solutions.
This is the constant time notation. The runtime remains steady regardless of input size. For example, accessing an element in an array by index and inserting/deleting an element in a hash table.
Linear time notation. The runtime grows in direct proportion to the input size. For example, finding the max or min element in an unsorted array.
Logarithmic time notation. The runtime increases slowly as the input grows. For example, a binary search on a sorted array and operations on balanced binary search trees.
Quadratic time notation. The runtime grows exponentially with input size. For example, simple sorting algorithms like bubble sort, insertion sort, and selection sort.
Cubic time notation. The runtime escalates rapidly as the input size increases. For example, multiplying two dense matrices using the naive algorithm.
Linearithmic time notation. This is a blend of linear and logarithmic growth. For example, efficient sorting algorithms like merge sort, quick sort, and heap sort
Exponential time notation. The runtime doubles with each new input element. For example, recursive algorithms solve problems by dividing them into multiple subproblems.
Factorial time notation. Runtime skyrockets with input size. For example, permutation-generation problems.
Square root time notation. Runtime increases relative to the inputโs square root. For example, searching within a range such as the Sieve of Eratosthenes for finding all primes up to n.
From simple array operations to complex sorting algorithms, understanding the Big O Notation is critical for building high-performance software solutions.
O(1)
This is the constant time notation. The runtime remains steady regardless of input size. For example, accessing an element in an array by index and inserting/deleting an element in a hash table.
O(n)
Linear time notation. The runtime grows in direct proportion to the input size. For example, finding the max or min element in an unsorted array.
O(log n)
Logarithmic time notation. The runtime increases slowly as the input grows. For example, a binary search on a sorted array and operations on balanced binary search trees.
O(n^2)
Quadratic time notation. The runtime grows exponentially with input size. For example, simple sorting algorithms like bubble sort, insertion sort, and selection sort.
O(n^3)
Cubic time notation. The runtime escalates rapidly as the input size increases. For example, multiplying two dense matrices using the naive algorithm.
O(n logn)
Linearithmic time notation. This is a blend of linear and logarithmic growth. For example, efficient sorting algorithms like merge sort, quick sort, and heap sort
O(2^n)
Exponential time notation. The runtime doubles with each new input element. For example, recursive algorithms solve problems by dividing them into multiple subproblems.
O(n!)
Factorial time notation. Runtime skyrockets with input size. For example, permutation-generation problems.
O(sqrt(n))
Square root time notation. Runtime increases relative to the inputโs square root. For example, searching within a range such as the Sieve of Eratosthenes for finding all primes up to n.
โค3๐ฅ2
ู
ุณุงุฑุงุช ุชุนูู
ุดุงู
ูุฉ ูู ู
ุฌุงูุงุช ุงูุจุฑู
ุฌุฉ ๐ป
ุงูู ุณุงุฑุงุช ุฏู ูุชุณุงุนุฏู ุชุฎุทุท ุฑุญูุฉ ุงูุชุนูู ุฎูุงู ุงูู 12 ุดูุฑ ุงูุฌุงููู (ุฃู ุฃูุชุฑ ูู ู ุฌุงู ุงูููุจ)ุ ูุฏู ู ู ุบูุฑ ู ุง ุชุถูุน ููุชู ูู ุงูุจุญุซ ุนู ุฅูู ุงููู ุงูู ูุฑูุถ ุชุชุนูู ู ูู ูู ู ุฌุงู. โ
โโโ
https://www.linkedin.com/posts/dev-alisamir_softwaredeveloper-softwaredevelopment-roadmap-activity-7250153662952456192-IM-C
ุงูู ุณุงุฑุงุช ุฏู ูุชุณุงุนุฏู ุชุฎุทุท ุฑุญูุฉ ุงูุชุนูู ุฎูุงู ุงูู 12 ุดูุฑ ุงูุฌุงููู (ุฃู ุฃูุชุฑ ูู ู ุฌุงู ุงูููุจ)ุ ูุฏู ู ู ุบูุฑ ู ุง ุชุถูุน ููุชู ูู ุงูุจุญุซ ุนู ุฅูู ุงููู ุงูู ูุฑูุถ ุชุชุนูู ู ูู ูู ู ุฌุงู. โ
โโโ
https://www.linkedin.com/posts/dev-alisamir_softwaredeveloper-softwaredevelopment-roadmap-activity-7250153662952456192-IM-C
๐4โค3๐ฅ1