Watch "आता लहान मुलांनाही मिळणार पेन्शन, केंद्राने घेतला मोठा निर्णय, जाणून घ्या नियम Zee24Taas Live" on YouTube
https://youtu.be/6vsaTHBTf0w
https://youtu.be/6vsaTHBTf0w
YouTube
आता लहान मुलांनाही मिळणार पेन्शन, केंद्राने घेतला मोठा निर्णय, जाणून घ्या नियम Zee24Taas Live
#PensionScheme #PensionForChildren #MarathiNewsLive
गोड बातमी ! आता लहान मुलांनाही मिळणार पेन्शन, केंद्राने घेतला मोठा निर्णय, जाणून घ्या नियम Zee24Taas
Link - https://youtu.be/6vsaTHBTf0w
झी २४ तासच्या बातम्या आता APP डाऊनलोड करा... लिंक http://onelink.to/xuur2f…
गोड बातमी ! आता लहान मुलांनाही मिळणार पेन्शन, केंद्राने घेतला मोठा निर्णय, जाणून घ्या नियम Zee24Taas
Link - https://youtu.be/6vsaTHBTf0w
झी २४ तासच्या बातम्या आता APP डाऊनलोड करा... लिंक http://onelink.to/xuur2f…
Watch "Passing rules and pass hone ka tarika required marks and criteria for class 10th ssc maharashtra boa" on YouTube
https://youtu.be/SbtJ2J1n-mQ
https://youtu.be/SbtJ2J1n-mQ
YouTube
Passing rules and pass hone ka tarika required marks and criteria for class 10th ssc maharashtra boa
Use my code EDU1 to unlock this feature
AAD_SSC Class 9: https://unacademy.onelink.me/k7y7/9937d2c9
AAD_SSC Class 10: https://unacademy.onelink.me/k7y7/74156b17
AAD_HSC Class 11: https://unacademy.onelink.me/k7y7/ebb50874
AAD_HSC Class 12: https://unacad…
AAD_SSC Class 9: https://unacademy.onelink.me/k7y7/9937d2c9
AAD_SSC Class 10: https://unacademy.onelink.me/k7y7/74156b17
AAD_HSC Class 11: https://unacademy.onelink.me/k7y7/ebb50874
AAD_HSC Class 12: https://unacad…
*IMPORTANT NOTICE*
*MHT - CET* *Registration Started*
शैक्षणिक वर्ष २०२२ - २३ करिता एमएचटी - सीईटी - २०२२ प्रवेश परीक्षेच्या ऑनलाईन अर्जाची नोंदणी प्रक्रिया दिनांक १०/०२/२०२२ पासून ते दिनांक ३१/०३/२०२२ पर्यंत सुरू राहील. सदर अर्ज नोंदणीसाठी उमेदवारांनी https://t.co/1lt6aqPZz9 या संकेतस्थळावर भेट द्यावी.
*MHT - CET* *Registration Started*
शैक्षणिक वर्ष २०२२ - २३ करिता एमएचटी - सीईटी - २०२२ प्रवेश परीक्षेच्या ऑनलाईन अर्जाची नोंदणी प्रक्रिया दिनांक १०/०२/२०२२ पासून ते दिनांक ३१/०३/२०२२ पर्यंत सुरू राहील. सदर अर्ज नोंदणीसाठी उमेदवारांनी https://t.co/1lt6aqPZz9 या संकेतस्थळावर भेट द्यावी.
अभियांत्रिकी पदवी अभ्यासक्रमामध्ये प्रवेश घेण्यासाठी MHT-CET 2022 ही प्रवेश परीक्षा देणे अनिवार्य आहे. या प्रवेश परीक्षेसाठी ऑनलाईन नोंदणी १० फेब्रुवारी २०२२ ते ३१ मार्च २०२२ पर्यंत करायची आहे.
आवश्यक कागदपत्रे:
१. दहावीचे मार्कशीट
२. पासपोर्ट फोटोची स्कॅन कॉपी
३. स्वाक्षरीची स्कॅन कॉपी
४. ओळखीच्या पुराव्याची स्कॅन कॉपी (आधार कार्ड / पॅन कार्ड / पासपोर्ट / ड्रायविंग लायसेन्स / फोटो असलेले बँक पासबुक इ.)
MVPS’s KBT College of Engineering, Nashik.
आवश्यक कागदपत्रे:
१. दहावीचे मार्कशीट
२. पासपोर्ट फोटोची स्कॅन कॉपी
३. स्वाक्षरीची स्कॅन कॉपी
४. ओळखीच्या पुराव्याची स्कॅन कॉपी (आधार कार्ड / पॅन कार्ड / पासपोर्ट / ड्रायविंग लायसेन्स / फोटो असलेले बँक पासबुक इ.)
MVPS’s KBT College of Engineering, Nashik.
📚Trigonometric Equations and Identities📚
A function f(x) is said to be periodic if there exists some T > 0 such that f(x+T) = f(x) for all x in the domain of f(x).
In case, the T in the definition of period of f(x) is the smallest positive real number then this ‘T’ is called the period of f(x).
Periods of various trigonometric functions are listed below:
1) sin x has period 2π
2) cos x has period 2π
3) tan x has period π
4) sin(ax+b), cos (ax+b), sec(ax+b), cosec (ax+b) all are of period 2π/a
5) tan (ax+b) and cot (ax+b) have π/a as their period
6) |sin (ax+b)|, |cos (ax+b)|, |sec(ax+b)|, |cosec (ax+b)| all are of period π/a
7) |tan (ax+b)| and |cot (ax+b)| have π/2a as their period
➖Sum and Difference Formulae of Trigonometric Ratios
1) sin(a + ß) = sin(a)cos(ß) + cos(a)sin(ß)
2) sin(a – ß) = sin(a)cos(ß) – cos(a)sin(ß)
3) cos(a + ß) = cos(a)cos(ß) – sin(a)sin(ß)
4) cos(a – ß) = cos(a)cos(ß) + sin(a)sin(ß)
5) tan(a + ß) = [tan(a) + tan (ß)]/ [1 - tan(a)tan (ß)]
6)tan(a - ß) = [tan(a) - tan (ß)]/ [1 + tan (a) tan (ß)]
7) tan (π/4 + θ) = (1 + tan θ)/(1 - tan θ)
8) tan (π/4 - θ) = (1 - tan θ)/(1 + tan θ)
9) cot (a + ß) = [cot(a) . cot (ß) - 1]/ [cot (a) +cot (ß)]
10) cot (a - ß) = [cot(a) . cot (ß) + 1]/ [cot (ß) - cot (a)]
➖Double or Triple -Angle Identities
1) sin 2x = 2sin x cos x
2) cos2x = cos2x – sin2x = 1 – 2sin2x = 2cos2x – 1
3) tan 2x = 2 tan x / (1-tan 2x)
4) sin 3x = 3 sin x – 4 sin3x
5) cos3x = 4 cos3x – 3 cosx
6) tan 3x = (3 tan x - tan3x) / (1- 3tan 2x)
➖For angles A, B and C, we have
1) sin (A + B +C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC
2) cos (A + B +C) = cosAcosBcosC- cosAsinBsinC - sinAcosBsinC - sinAsinBcosC
3) tan (A + B +C) = [tan A + tan B + tan C –tan A tan B tan C]/ [1- tan Atan B - tan B tan C –tan A tan C
4) cot (A + B +C) = [cot A cot B cot C – cotA - cot B - cot C]/ [cot A cot B + cot Bcot C + cot A cotC–1]
➖List of some other trigonometric formulas:
1) 2sinAcosB = sin(A + B) + sin (A - B)
2) 2cosAsinB = sin(A + B) - sin (A - B)
3) 2cosAcosB = cos(A + B) + cos(A - B)
4) 2sinAsinB = cos(A - B) - cos (A + B)
5) sin A + sin B = 2 sin [(A+B)/2] cos [(A-B)/2]
6) sin A - sin B = 2 sin [(A-B)/2] cos [(A+B)/2]
7) cosA + cos B = 2 cos [(A+B)/2] cos [(A-B)/2]
8) cosA - cos B = 2 sin [(A+B)/2] sin [(B-A)/2]
9) tanA ± tanB = sin (A ± B)/ cos A cos B
10)cot A ± cot B = sin (B ± A)/ sin A sin B
➖Method of solving a trigonometric equation:
1) If possible, reduce the equation in terms of any one variable, preferably x. Then solve the equation as you used to in case of a single variable.
2) Try to derive the linear/algebraic simultaneous equations from the given trigonometric equations and solve them as algebraic simultaneous equations.
3) At times, you might be required to make certain substitutions. It would be beneficial when the system has only two trigonometric functions.
➖Some results which are useful for solving trigonometric equations:
1) sin θ = sina and cosθ = cosa ⇒ θ = 2nπ + a
2) sin θ = 0 ⇒ θ = nπ
3) cosθ = 0 ⇒ θ = (2n + 1)π/2
4) tan θ = 0 ⇒ θ = nπ
5) sinθ = sina⇒ θ = nπ + (-1)na where a ∈ [–π/2, π/2]
6) cosθ= cos a ⇒ θ = 2nπ ± a, where a ∈[0,π]
7) tanθ = tana⇒ θ = nπ+ a, where a ∈[–π/2, π/2]
8) sinθ = 1 ⇒ θ= (4n + 1)π/2
9) sin θ = -1 ⇒ θ = (4n - 1) π /2
10) sin θ = -1 ⇒ θ = (2n +1) π /2
11) |sinθ| = 1⇒ θ =2nπ
12) cosθ = 1 ⇒ θ =(2n + 1)
13) |cosθ| = 1⇒ θ =nπ
A function f(x) is said to be periodic if there exists some T > 0 such that f(x+T) = f(x) for all x in the domain of f(x).
In case, the T in the definition of period of f(x) is the smallest positive real number then this ‘T’ is called the period of f(x).
Periods of various trigonometric functions are listed below:
1) sin x has period 2π
2) cos x has period 2π
3) tan x has period π
4) sin(ax+b), cos (ax+b), sec(ax+b), cosec (ax+b) all are of period 2π/a
5) tan (ax+b) and cot (ax+b) have π/a as their period
6) |sin (ax+b)|, |cos (ax+b)|, |sec(ax+b)|, |cosec (ax+b)| all are of period π/a
7) |tan (ax+b)| and |cot (ax+b)| have π/2a as their period
➖Sum and Difference Formulae of Trigonometric Ratios
1) sin(a + ß) = sin(a)cos(ß) + cos(a)sin(ß)
2) sin(a – ß) = sin(a)cos(ß) – cos(a)sin(ß)
3) cos(a + ß) = cos(a)cos(ß) – sin(a)sin(ß)
4) cos(a – ß) = cos(a)cos(ß) + sin(a)sin(ß)
5) tan(a + ß) = [tan(a) + tan (ß)]/ [1 - tan(a)tan (ß)]
6)tan(a - ß) = [tan(a) - tan (ß)]/ [1 + tan (a) tan (ß)]
7) tan (π/4 + θ) = (1 + tan θ)/(1 - tan θ)
8) tan (π/4 - θ) = (1 - tan θ)/(1 + tan θ)
9) cot (a + ß) = [cot(a) . cot (ß) - 1]/ [cot (a) +cot (ß)]
10) cot (a - ß) = [cot(a) . cot (ß) + 1]/ [cot (ß) - cot (a)]
➖Double or Triple -Angle Identities
1) sin 2x = 2sin x cos x
2) cos2x = cos2x – sin2x = 1 – 2sin2x = 2cos2x – 1
3) tan 2x = 2 tan x / (1-tan 2x)
4) sin 3x = 3 sin x – 4 sin3x
5) cos3x = 4 cos3x – 3 cosx
6) tan 3x = (3 tan x - tan3x) / (1- 3tan 2x)
➖For angles A, B and C, we have
1) sin (A + B +C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC
2) cos (A + B +C) = cosAcosBcosC- cosAsinBsinC - sinAcosBsinC - sinAsinBcosC
3) tan (A + B +C) = [tan A + tan B + tan C –tan A tan B tan C]/ [1- tan Atan B - tan B tan C –tan A tan C
4) cot (A + B +C) = [cot A cot B cot C – cotA - cot B - cot C]/ [cot A cot B + cot Bcot C + cot A cotC–1]
➖List of some other trigonometric formulas:
1) 2sinAcosB = sin(A + B) + sin (A - B)
2) 2cosAsinB = sin(A + B) - sin (A - B)
3) 2cosAcosB = cos(A + B) + cos(A - B)
4) 2sinAsinB = cos(A - B) - cos (A + B)
5) sin A + sin B = 2 sin [(A+B)/2] cos [(A-B)/2]
6) sin A - sin B = 2 sin [(A-B)/2] cos [(A+B)/2]
7) cosA + cos B = 2 cos [(A+B)/2] cos [(A-B)/2]
8) cosA - cos B = 2 sin [(A+B)/2] sin [(B-A)/2]
9) tanA ± tanB = sin (A ± B)/ cos A cos B
10)cot A ± cot B = sin (B ± A)/ sin A sin B
➖Method of solving a trigonometric equation:
1) If possible, reduce the equation in terms of any one variable, preferably x. Then solve the equation as you used to in case of a single variable.
2) Try to derive the linear/algebraic simultaneous equations from the given trigonometric equations and solve them as algebraic simultaneous equations.
3) At times, you might be required to make certain substitutions. It would be beneficial when the system has only two trigonometric functions.
➖Some results which are useful for solving trigonometric equations:
1) sin θ = sina and cosθ = cosa ⇒ θ = 2nπ + a
2) sin θ = 0 ⇒ θ = nπ
3) cosθ = 0 ⇒ θ = (2n + 1)π/2
4) tan θ = 0 ⇒ θ = nπ
5) sinθ = sina⇒ θ = nπ + (-1)na where a ∈ [–π/2, π/2]
6) cosθ= cos a ⇒ θ = 2nπ ± a, where a ∈[0,π]
7) tanθ = tana⇒ θ = nπ+ a, where a ∈[–π/2, π/2]
8) sinθ = 1 ⇒ θ= (4n + 1)π/2
9) sin θ = -1 ⇒ θ = (4n - 1) π /2
10) sin θ = -1 ⇒ θ = (2n +1) π /2
11) |sinθ| = 1⇒ θ =2nπ
12) cosθ = 1 ⇒ θ =(2n + 1)
13) |cosθ| = 1⇒ θ =nπ